
Download from Wow! eBook <www.wowebook.com>

tmux
Productive Mouse-Free Development

Brian P. Hogan

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Download from Wow! eBook <www.wowebook.com>

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Susannah Pfalzer (editor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-96-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.1—March 12, 2012

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com

Contents

Acknowledgments i

Preface iii

1. Learning The Basics 1
Installing tmux 11.1

1.2 Starting tmux 3
1.3 Detaching and Attaching Sessions 4
1.4 Working with Windows 7
1.5 Working with Panes 9
1.6 Working with Command Mode 11
1.7 What’s Next? 12

2. Configuring tmux 15
Introducing the .tmux.conf File 152.1

2.2 Customizing Keys, Commands, and User Input 17
2.3 Visual Styling 22
2.4 Customizing the Status Bar 27
2.5 What’s Next? 30

3. Scripting Customized tmux Environments 33
Creating a Custom Setup with tmux Commands 333.1

3.2 Using tmux Configuration for Setup 37
3.3 Managing Configuration with tmuxinator 39
3.4 What’s Next? 42

4. Working With Text and Buffers 45
Scrolling Through Output with Copy Mode 454.1

4.2 Copying and Pasting Text 46
4.3 Working with the Clipboard on Linux 49
4.4 Using OS X Clipboard Commands 50
4.5 What’s Next? 51

Download from Wow! eBook <www.wowebook.com>

5. Pair Programming with tmux 53
Pairing with a Shared Account 545.1

5.2 Using a Shared Account and Grouped Sessions 55
5.3 Pairing with Separate Accounts and Sockets 56
5.4 What’s Next? 57

6. Workflows 59
Working Effectively with Panes and Windows 596.1

6.2 Managing Sessions 63
6.3 tmux and Your Operating System 64
6.4 What’s Next? 67

A1. Our Configuration 69

v • Contents

Download from Wow! eBook <www.wowebook.com>

Acknowledgments
This book started out as something I’d planned to self-publish, but working
with the fine folks at the Pragmatic Bookshelf has always been such a great
experience that I decided to see if they would work with me again. I’m so
grateful to Dave and Andy for letting me work with them again.

Thanks to my awesome editor, Susannah Pfalzer, the book you’re reading is
in much better shape. Her guidance was essential in keeping things focused,
on track, and readable.

The folks that volunteered their time to review this book provided some of the
most interesting and thoughtful comments I’ve seen. Thanks to them, this
book has a bunch of wonderful ideas, too. Thanks so much to Jeff Holland,
Austen Ott, Kevin Gisi, Tony Collen, Charley Stran, Chris Johnson, Drew
Neil, Darcy Laycock, Luke Chadwick, Jeff Carley, Marc Harter, and Nick
LaMuro for the great suggestions.

Special thanks to Chris Warren, Mike Weber, Aaron Godin, Emma Smith,
Erich Tesky, and the rest of my business associates for their support, and to
Chris Johnson for getting me hooked on using tmux in the first place.

Finally, I’m extremely grateful for the continued support of my wife Carissa,
who works hard to wrangle our daughters so I can carve out time to write.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Preface
Your mouse is slowing you down.

The mouse, when introduced, created a new way for us to interact with our
computers. We could click, double-click, triple-click, and now even swipe to
interact with our applications. The mouse, along with graphical interfaces,
made computers just a little easier to use for average users. But there’s a
downside to the mouse, especially for programmers.

As we build software, we work with multiple programs throughout the course
of our day. A web developer, for example, might have a database console, web
server, and a text editor running at the same time. Switching between these
with the mouse eats up valuable time and can break your focus. It may not
seem like much, but moving your hand off of the keyboard’s home row,
placing it on the mouse, locating the pointer, and performing the task can be
pretty distracting.

Using tmux, you can create an environment like the one shown in Figure 1,
tmux as a development environment, on page iv. Using tmux’s windows, you
can easily manage the text editor, the database console, and the local web
server within a single environment. And you can split tmux windows into
sections, so multiple apps can run side by side. This means you can run a
text-based browser, IRC client, or your automated tests in the same window
as your main editor.

Best of all, you can quickly move between these windows and panes using
only the keyboard, which will greatly increase both your concentration and
your productivity.

In this book, you’ll learn how to configure, use, and customize tmux. You’ll
learn how to manage multiple programs simultaneously, write scripts to create
custom environments, and find out how to use tmux to work remotely with
others. With tmux, you can create a work environment that keeps almost
everything you need at your fingertips.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Figure 1—tmux as a development environment

What Is tmux?

tmux is a terminal multiplexer. It lets us use a single environment to launch
multiple terminals, or windows, each running its own process or program.
For example, we can launch tmux and load up the Vim text editor. We can
then create a new window, load up a database console, and switch back and
forth between these programs all within a single session.

If you use a modern operating system and a terminal that has tabs, this
doesn’t sound like anything new. But running multiple programs simultane-
ously is only one of tmux’s features. We can divide windows into horizontal
or vertical panes, which means we can run two or more programs on the
same screen side by side. And we can do it all without using the mouse.

We can also detach from a session, meaning we can leave our environment
running in the background. If you’ve used GNU-Screen before, you’re familiar
with this feature. In many ways, tmux is like GNU-Screen with a lot of extra
features, and a much simpler configuration system. And since tmux uses a
client-server model, we can control windows and panes from a central location,
or even jump between multiple sessions from a single terminal window. This
client-server model also lets us create scripts and interact with tmux from
other windows or applications.

Over the course of this book, we’ll explore all of these features and more.

iv • Preface

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Who Should Read This Book

This book aims to help application developers who work on OS X or Linux
operating systems and spend a good part of their time using the terminal.

If you’re a software developer, you’ll see how to use tmux to build a develop-
ment environment that can make working with multiple terminal sessions a
breeze. And if you’re already comfortable using Vim or Emacs, you’ll see how
tmux can accelerate your workflow even more.

If you’re a system administrator or a developer who spends some time working
with remote servers, you’ll be interested in how you can leverage tmux to
create a persistent dashboard for monitoring servers.

What’s In This Book

This book will show you how to incorporate tmux into your work by taking
you through its basic features and showing you how you might apply them
to everyday situations.

In Chapter 1, Learning The Basics, on page 1, you’ll learn about the basic
features of tmux as you create sessions, panes, and windows and learn how
to perform basic navigation.

In Chapter 2, Configuring tmux, on page 15, you’ll learn how to redefine many
of the default keybindings and the appearance of tmux.

In Chapter 3, Scripting Customized tmux Environments, on page 33, you’ll see
how to script your own development environment using the command-line
interface, configuration files, and the tmuxinator program.

After that, you’ll work with text in Chapter 4, Working With Text and Buffers,
on page 45. You’ll see how to use keyboard keys to move backwards through
the buffer, how to select and copy text, and how to work with multiple paste
buffers.

Next, in Chapter 5, Pair Programming with tmux, on page 53, you’ll learn how
to set up tmux so that you and a coworker can work together on the same
codebase from different computers using tmux.

Finally, Chapter 6, Workflows, on page 59 covers more advanced ways to
manage windows, panes, and sessions, and shows you how to be even more
productive with tmux.

report erratum • discuss

Who Should Read This Book • v

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

What You Need

In order to use tmux, you’ll need a computer that runs Mac OS X or a flavor
of UNIX or Linux. Unfortunately, tmux does not run under Windows, but it
will run great on a virtual machine, VPS, or shared hosting environment
running Linux.

While not required, experience with text editors such as Vim or Emacs will
be helpful. tmux works very much the same way, and it has some predefined
keyboard shortcuts that users of these editors will find familiar.

Conventions

tmux is a tool that’s driven by the keyboard. You’ll encounter many keyboard
shortcuts throughout the book. Since tmux supports both lower- and upper-
case keyboard shortcuts, it may sometimes be unclear which key the book
is referencing.

To keep it simple, these are the conventions I’ve used.

• CTRL-b means “press the CTRL and b keys simultaneously.”

• CTRL-R means the same thing, except that you’ll need to use the SHIFT key
to produce the capital “R.” I won’t explicitly show the SHIFT key in any of
these keystrokes.

• CTRL-b d means “press the CONTROL and b keys simultaneously, then release,
and then press d .” In Chapter 1, Learning The Basics, on page 1, you’ll
learn about the command prefix, which will use this notation, but short-
ened to PREFIX d .

• Finally, I’ll show some terminal commands throughout the book, like

$ tmux new-session

The dollar sign is simply the prompt from the shell session and you won’t
need to type it when you type the command.

Online Resources

The book’s web site1 has links to an interactive discussion forum as well as
a place to submit errata for the book. You’ll also find the source code for the

1. http://pragprog.com/titles/bhtmux

vi • Preface

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

configuration files and scripts we build in this book. You can click the box
above the code excerpts to download that source code directly.

Working with tmux has made me much more productive, and I’m excited to
share my experiences with you. Let’s get started by installing tmux and
working with its basic features.

report erratum • discuss

Online Resources • vii

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

CHAPTER 1

Learning The Basics
tmux can be an incredible productivity booster once you get the hang of it.
In this chapter you’ll get acquainted with tmux’s basic features as you manage
applications within sessions, windows, and panes. These simple concepts
make up the foundation of what makes tmux an amazing environment for
developers and system administrators alike.

But before you can learn how to use these basic features, you need to get
tmux installed.

1.1 Installing tmux

You can install tmux in one of two ways: using a package manager for your
operating system, or building tmux from source.

Whichever method you choose, you’ll want to ensure you install tmux version
1.6 or higher, which is the version this book will use. Earlier versions don’t
support some of the features we’re going to cover.

Installing Via a Package Manager

tmux is available in many package managers. On OS X, you can get tmux
using Homebrew1 or Macports.2 Installation of these package managers is
beyond the scope of this book; consult the web page for the manager of your
choice. For either one, you’ll need Xcode, which you can find on the DVD that
came with your Mac, or through the Mac App Store.

If you use Homebrew, you can install tmux like this:

$ brew install tmux

1. http://mxcl.github.com/homebrew/
2. http://www.macports.org/

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://mxcl.github.com/homebrew/
http://www.macports.org/
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

If you use MacPorts, you can install tmux with this command:

$ sudo port install tmux

On Ubuntu, you can grab tmux with

$ sudo apt-get install tmux

To ensure that tmux is installed properly, and to check that you have the
correct version, execute this command from your terminal:

$ tmux -V
tmux 1.6

Depending on your package manager, you may not be able to get the most
recent version of tmux, which means you’ll need to compile and install tmux
from source. Let’s explore what it takes to do that.

Installing from Source

The process of installing tmux is the same on both Mac OS X and Linux.
You’ll need the GCC compiler in either case.

For Mac users, that means installing Xcode, found either on the DVD that
came with the computer or by installing it through the Mac App Store.

For Linux users, the package management tools usually have the GCC com-
pilers. On Ubuntu, you simply type

$ sudo apt-get install build-essential

to get all the compilers you need.

tmux also depends on libevent and ncurses, and you’ll need the prerequisites
for these as well. On Ubuntu, you can install these using the package man-
ager like this:

$ sudo apt-get install libevent-dev libncurses5-dev

Once you have the compilers and prerequisites installed, grab the tmux source
code and download it.3 Untar the downloaded version and install it like this:

$ tar -zxvf tmux-1.6.tar.gz
$ cd tmux-1.6
$./configure
$ make
$ sudo make install

3. http://tmux.sourceforge.net/

2 • Chapter 1. Learning The Basics

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://tmux.sourceforge.net/
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

You can test out the installation by executing this from the terminal, which
returns the currently installed version of tmux:

$ tmux -V
tmux 1.6

Now that we have tmux properly installed, we can explore the core features
of tmux, starting with a basic session.

1.2 Starting tmux

Starting tmux is as easy as typing

$ tmux

from a terminal window. You’ll see something that looks like Figure 2, New
tmux session, on page 4 appear on your screen. This is a tmux “session,”
and it works just like your normal terminal session. You can issue any termi-
nal command you’d like and everything will work as expected.

To close the tmux session, simply type

$ exit

in the session itself. This closes tmux and returns back to the standard
terminal.

But, unless you’re only using tmux for a very brief period, this isn’t the best
way to work with sessions in tmux. We can instead create “named sessions”
that we can then identify later.

Creating Named Sessions

We can actually have multiple sessions on a single computer, and we’ll want
to be able to keep them organized. We can do that by giving each session we
create its own unique name. Let’s create a named session called “basic” right
now:

$ tmux new-session -s basic

We can shorten this command to

$ tmux new -s basic

which is the convention you’ll see throughout the rest of the book.

When we enter this command, we’ll be brought into a brand new tmux session,
but we won’t really notice anything special or different than if we started
things up normally. If we typed exit, we’d just be right back at the terminal.

report erratum • discuss

Starting tmux • 3

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Figure 2—New tmux session

But named sessions come in handy when we want to leave tmux running in
the background, which we’ll discuss next. But before we continue, type

$ exit

to exit tmux.

1.3 Detaching and Attaching Sessions

One of tmux’s biggest advantages is that we can fire it up, start up programs
or processes inside the tmux environment, and then leave it running in the
background by “detaching” from the session.

If we close a regular terminal session, all the programs we have running in
that session are killed off. But when we detach from a tmux session, we’re
not actually closing tmux. Any programs we started up in that session will
stay running. We can then “attach” to the session and pick up where we left
off. To demonstrate, let’s create a new named tmux session, start up a pro-
gram, and detach from the session. First, we create the session:

$ tmux new -s basic

4 • Chapter 1. Learning The Basics

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Then, within the tmux session, we start an application called top, which
monitors our memory and CPU usage, like this:

$ top

We now have something that looks like Figure 3, The top command running
in tmux, on page 6 running in our terminal. We can now detach from the
tmux session by pressing CTRL-b followed by d . This returns us to our regular
terminal prompt. We’ll learn how to get back into that session shortly, but
first, let’s talk about the command prefix.

The Command Prefix

Since our programs are running inside tmux, we need a way to tell tmux that
the command we’re typing is for tmux and not for the underlying application.
The CTRL-b combination does just that.

When we wanted to detach from our tmux session, we pressed CTRL-b, followed
by d for “detach.” We have to prefix each tmux command with this key com-
bination, and it’s important to note that we don’t hold all these keys down
together, but we instead first press CTRL-b simultaneously, release those keys,
and then immediately press the key for the command we want to send to
tmux.

Throughout the rest of this book, we’ll simply use the notation PREFIX , followed
by the shortcut key for our commands, like PREFIX d for detaching from a ses-
sion. In Chapter 2, Configuring tmux, on page 15, we’ll remap the prefix to an
easier combination, but until then, we’ll use the defaults.

Now, let’s learn how to get back in to that tmux session we left running. But
before we do, close your terminal window.

Reattaching to Existing Sessions

We’ve set up a tmux session, fired up a program inside the session, detached
from it, and closed our terminal session, but the tmux session is still chugging
along, along with the top application we launched.

We can list existing tmux sessions using the command

$ tmux list-sessions

in a new terminal window. We can shorten this command to this:

$ tmux ls

The command shows that we have one session currently running:

basic: 1 windows (created Mon Jan 30 16:58:26 2012) [105x25]

report erratum • discuss

Detaching and Attaching Sessions • 5

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Figure 3—The top command running in tmux

To attach to the session, we use the attach keyword. If we only have one session
running, we can simply attach to it with

$ tmux attach

and we’ll be attached to the session again. Things get a little more tricky if
we have more than one session running. Let’s detach from the basic session
with PREFIX d .

Now, if we create a new tmux instance in the background using the command

$ tmux new -s second_session -d

and list the sessions again, we’ll see this:

$ tmux ls
basic: 1 windows (created Mon Jan 30 16:58:26 2012) [105x25]
second_session: 1 windows (created Mon Jan 30 17:49:21 2012) [105x25]

We can attach to the session we want by using the -t flag:

$ tmux attach -t second_session

6 • Chapter 1. Learning The Basics

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

This puts us in the second_session tmux session. We can detach from this session
just as we did previously, and then attach to a different session. In Moving
Between Sessions, on page 63 you’ll see some other ways to move between
active sessions. But for now, let’s remove the active sessions.

Killing Sessions

We can type exit within a session to destroy the session, but we can also kill
off sessions with the kill-session command.

$ tmux kill-session -t basic
$ tmux kill-session -t second_session

This is useful for situations where a program in a session is hanging.

If we list the sessions again, we’ll get this message:

$ tmux ls
failed to connect to server: Connection refused

Since there are no tmux sessions running, tmux itself isn’t running, so it isn’t
able to handle the request.

Now that you know the basics of creating and working with sessions, let’s
look at how we can work with multiple programs within a single session.

1.4 Working with Windows

It’s possible, and very common, to run multiple, simultaneous commands
within a tmux session. We can keep these organized with windows, which
are similar to tabs in modern graphical terminal emulators or web browsers.

When we create a new tmux session, the environment sets up an initial window
for us. We can create as many as we’d like, and they will persist when we
detach and reattach.

Let’s create a new session that has two windows. The first window will have
our normal prompt, and the second window will run the top command. We’ll
create a named session called “windows,” like this:

$ tmux new -s windows -n shell

By using the -n flag, we tell tmux to name the first window so we can identify
it easily.

Now let’s add a window to this session.

report erratum • discuss

Working with Windows • 7

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Creating and Naming Windows

To create a window in a current session, we simply press PREFIX c . Creating a
window like this automatically brings the new window into focus. From here,
we can start up another application. Let’s start top in this new window.

$ top

Our first window has a name we defined, called “shell,” but our second window
now appears to have the name “top.” This window’s name changes based on
the app that’s currently running because we never gave it a default name
when we created it. Let’s give this window a proper name.

To rename a window, we press PREFIX followed by , (a comma) and the status
bar changes, letting us rename the current window. Go ahead and rename
the window to “Processes.”

We can create as many windows in a tmux session as we’d like. But once we
have more than one, we need to be able to move between them.

Moving Between Windows

We’ve created two windows in our environment, and we can navigate around
our windows in several ways. When we only have two windows, we can
quickly move between the windows with PREFIX n, or “next window.” This simply
cycles through the windows we have open. Since we only have two windows
right now, this just toggles between them.

We can use PREFIX p to go to the previous window.

By default, windows in tmux each have a number, starting at 0. We can
quickly jump to the first window with PREFIX 0 , and the second window with
PREFIX 1 . This zero-based array of windows isn’t always intuitive, and in
Chapter 2, Configuring tmux, on page 15, you’ll see how we can make the list
of windows start at one instead of zero.

If we end up with more than nine windows, we can simply use PREFIX f to find
a window by name (if we named our windows), or PREFIX w to display a visual
menu of our windows so we can select the one we’d like.

From here, we can continue creating new windows and launching programs.
When we detach from our session and reattach later, our windows will all be
where we left them.

To close a window, we can either type “exit” into the prompt in the window,
or we can use PREFIX & , which gives us a confirmation message in the status
bar before killing off the window. If we accept, our previous window comes

8 • Chapter 1. Learning The Basics

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

into focus. To completely close out the tmux session, we have to close all the
windows.

Creating windows is great, but we can make tmux even more useful by splitting
a window into panes.

1.5 Working with Panes

Having programs in separate windows is fine for stuff we don’t mind having
out of the way. But with tmux, we can take a single session and divide it into
panes.

Let’s create a new tmux session called “panes” so we can experiment with
how panes work.

$ tmux new -s panes

We can split windows vertically or horizontally. Let’s split the window in half
vertically first, and then horizontally, giving us one large pane on the left and
two smaller panes on the right, just like Figure 4, A tmux session divided into
panes, on page 10.

In the tmux session, press PREFIX % , and the window will divide down the mid-
dle and start up a second session in the new pane. In addition, the focus will
move to this new pane. Pressing PREFIX " (double quote) will split this new pane
in half horizontally. By default, new panes split the existing pane in half
evenly.

To cycle through the panes, press PREFIX o . We can also use PREFIX , followed by
the UP , DOWN , LEFT , or RIGHT keys to move around the panes.

With just a couple keystrokes, we’ve divided one window into a workspace
with three panes. Let’s look at how we can rearrange these panes with layouts.

Pane Layouts

We can resize a pane, either using incremental resizing or by using templates.
Resizing panes incrementally using the default keybindings is quite awkward.
In Chapter 2, Configuring tmux, on page 15, we’ll define some shortcuts to
make resizing panes easier. For now, we’ll use one of tmux’s several default
pane layouts:

• even-horizontal stacks all panes horizontally, left to right.

• even-vertical stacks all panes vertically, top to bottom.

report erratum • discuss

Working with Panes • 9

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Figure 4—A tmux session divided into panes

• main-horizontal creates one larger pane on the top and smaller panes
underneath.

• main-vertical creates one large pane on the left side of the screen, and stacks
the rest of the panes vertically on the right.

• tiled arranges all panes evenly on the screen.

We can cycle through these layouts by pressing PREFIX SPACEBAR .

Closing Panes

We can close a pane the same way we exit a terminal session or a tmux win-
dow: we simply type “exit” in the pane. You can also kill a pane with PREFIX X ,
which also closes the window if there’s only one pane in that window.

You’ll be asked to confirm if you want to kill the specified pane. Killing a pane
like this is great for situations where the pane has gotten stuck, or you can’t
interact with it anymore.

10 • Chapter 1. Learning The Basics

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

So far, we’ve been able to create new sessions, create windows and panes,
and move around a bit. Before we move on to more advanced topics, let’s
explore some tmux commands.

1.6 Working with Command Mode

So far, we’ve used key combinations to create windows and panes, but those
keybindings are actually just shortcuts for tmux commands with some preset
options. We can execute tmux commands two ways: from the terminal itself
or from the “command area” in the tmux status bar. You’ll learn about using
tmux commands from the terminal in Chapter 3, Scripting Customized tmux
Environments, on page 33, but for now, let’s explore tmux’s Command mode
by using it to create some new windows and panes in our workspace.

To enter Command mode, press PREFIX : (the colon) from within a running
tmux session. The status bar changes color and we get a command prompt
that indicates that we can type our command. Let’s create a new window by
using the new-window command, like this:

new-window -n console

By using a command rather than the shortcut, we were able to create a new
window and give it a name at the same time, by using the -n flag. Let’s take
this a step further and launch a new window that starts the top program. To
do that, we enter Command mode and type this command:

new-window -n processes "top"

When we press ENTER , our new window appears and we see the top application
running, showing our running processes.

Specifying an initial command for a window is extremely handy for short-term
tasks, but if we exit the top app by pressing q , the tmux window we created
will also close. You can use configuration settings to get around this, but if
you want the window to persist, simply create it without specifying an initial
command, and then execute your own command in the new window.

We can use Command mode to create new windows, new panes, or new ses-
sions, or even set other environmental options. In Chapter 2, Configuring
tmux, on page 15, we’ll create a few custom keybindings to make some of
these commands easier to use.

report erratum • discuss

Working with Command Mode • 11

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

1.7 What’s Next?

In this chapter, we covered the very basic usage of tmux sessions, panes,
windows, and commands, but there’s a lot more we can explore.

By pressing PREFIX ? , you can get a list of all predefined tmux keybindings and
the associated commands these trigger.

As you work with tmux, think about how you can create different environments
for your work. If you’re monitoring servers, you could use tmux panes to
create a dashboard that shows your various monitoring scripts and log files.

With the basics under our belt, let’s put together a custom configuration we
can use for the rest of our work.

For Future Reference

Creating Sessions

DescriptionCommand

Creates a new session without a name. Can be
shortened to tmux new or simply tmux.

tmux new-session

Creates a new session called “development.”tmux new -s development
Creates a session named “development” and
names the first window “editor.”

tmux new -s development -n editor

Attaches to a session named “development.”tmux attach -t development

Default Commands for Sessions, Windows, and Panes

DescriptionCommand

Detaches from the session, leaving the session running in the
background.

PREFIX d

Enters Command mode.PREFIX :

Creates a new window from within an existing tmux session.
Shortcut for new-window.

PREFIX c

Selects windows by number.PREFIX 0…9

Displays a selectable list of windows in the current session.PREFIX w
Displays a prompt to rename a window.PREFIX ,

Closes the current window after prompting for confirmation.PREFIX &

Divides the current window in half vertically.PREFIX %

Divides the current window in half horizontally.PREFIX "

12 • Chapter 1. Learning The Basics

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

DescriptionCommand

Cycles through open panes.PREFIX o
Momentarily displays pane numbers in each pane.PREFIX q
Closes the current pane after prompting for confirmation.PREFIX x
Cycles through the various pane layouts.PREFIX SPACE

report erratum • discuss

What’s Next? • 13

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

CHAPTER 2

Configuring tmux
tmux, by default, doesn’t have the most friendly commands. Many of the most
important and useful features are assigned to hard-to-reach keystrokes or
consist of long, verbose command strings. And tmux’s default color scheme
isn’t very easy on the eyes. In this chapter, we’re going to build a basic con-
figuration file for our tmux installation that we’ll then use for the rest of this
book. We’ll start out by customizing how we navigate around the screen and
how we create and resize panes, and then we’ll discuss how we can tackle
some more advanced settings. We’ll also make sure your Terminal is properly
configured so that some of the settings we make to tmux’s appearance look
good on your screen. When we’re done, you’ll have a better understanding of
how flexible tmux is, and you can start making it your own. Let’s start by
talking about how we actually configure tmux in the first place.

2.1 Introducing the .tmux.conf File

By default, tmux looks for configuration settings in two places. It first looks
in /etc/tmux.conf for a system-wide configuration. It then looks for a file called
.tmux.conf in the current user’s home directory. If these files don’t exist, tmux
simply uses its default settings. We don’t need to create a system-wide con-
figuration, so let’s create a brand new configuration file in our home directory.

$ touch ~/.tmux.conf

In this file we can do everything from defining new key shortcuts to setting
up a default environment with multiple windows, panes, and running pro-
grams. Let’s start by setting a couple basic options that will make working
with tmux much easier.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Remapping the Caps Lock Key

On many keyboards, the CAPS LOCK key sits right next to the a key on the home row
of the keyboard. By remapping this key to CTRL , you can make triggering commands
more comfortable.

On OS X, you can remap the CAPS LOCK key under the Keyboard preference pane,
under System Preferences. Just press the Modifier Keys button and change the action
for CAPS LOCK to “Control.”

Under Linux, the process can be a little more tricky depending on your operating
system, but you can find several methods described on the Emacs wiki.a

This small change to your configuration can save you a surprising amount of time
over the course of a day.

a. http://www.emacswiki.org/emacs/MovingTheCtrlKey

Defining an Easier Prefix

As you saw earlier, tmux uses CTRL-b as its command prefix. Many tmux users
started out using GNU-Screen, which uses CTRL-a for its command prefix.
CTRL-a is an excellent choice for a prefix because it’s easier to trigger, especially
if you’ve remapped your computer’s CAPS LOCK key to CTRL as explained in
Remapping the Caps Lock Key, on page 16. This keeps your hands on the
home row of your keyboard.

To set options in the .tmux.conf file, we use the set-option command, which we
can shorten to set. Let’s redefine our tmux prefix by adding this code to our
.tmux.conf file:

config/tmux.conf
set -g prefix C-a

In this example, we’re using the -g switch, for “global,” which sets the option
for all tmux sessions we create.

While not necessary, we can use the unbind-key, or unbind command to remove
a keybinding that’s been defined, so we can assign a different command to
this key later. Let’s free up CTRL-b like this:

unbind C-b

Changes to the file aren’t read by tmux automatically. So if you’re editing
your .tmux.conf file while tmux is running you’ll either need to completely close
all tmux sessions, or enter tmux’s Command mode with PREFIX : and type this
whenever you make a change:

16 • Chapter 2. Configuring tmux

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://www.emacswiki.org/emacs/MovingTheCtrlKey
http://media.pragprog.com/titles/bhtmux/code/config/tmux.conf
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

source-file ~/.tmux.conf

We can now use CTRL-a for our prefix. We’ll still continue to refer to it as PREFIX
in the rest of the examples in the book.

Changing the Default Delay

tmux adds a very small delay when sending commands, and this delay can
interfere with other programs such as the Vim text editor. We can set this
delay so it’s much more responsive:

set -sg escape-time 1

Once we reload our configuration file, we can issue keystrokes without delay.

Setting the Window and Panes Index

In Chapter 1, Learning The Basics, on page 1, we discussed windows, and
how when we create more than one window in a session, we reference windows
by their index. This index starts at zero, which can be a little awkward. By
adding this line to our configuration file:

set -g base-index 1

the window index will start at 1. This also means we can use PREFIX 1 to jump
to the first window, instead of PREFIX 0 .

We can also set the starting index for panes using the pane-base-index option.
Let’s add this line to our configuration so we have some consistency between
our pane and window numbering.

setw -g pane-base-index 1

Up until now, we’ve used the set command, which sets options for the tmux
session. In order to configure options that affect how we interact with windows,
we have to use another command, called set-window-option, which we can short-
en to setw. In this book, I’ve used the shortened versions of commands to
make the configuration examples fit on one line, but you’ll need to pay special
attention, because set and setw are easy to mix up.

Now let’s build some useful shortcuts that will increase our productivity.

2.2 Customizing Keys, Commands, and User Input

Many of the default keyboard shortcuts in tmux are a bit of a stretch, both
physically and mentally. Not only is PREFIX % hard to press, as it involves

report erratum • discuss

Customizing Keys, Commands, and User Input • 17

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

holding three keys, but without looking at the command reference, there’s
no easy way to remember what it does.

In this section, we’ll define, or redefine, some of the most-used tmux com-
mands. Let’s start by creating a custom keybinding to reload our tmux
configuration.

Creating a Shortcut to Reload the Configuration

Every time we make a change to our configuration file, we either have to shut
down all sessions and then restart tmux, or issue a command to reload our
configuration from within the running instances. Let’s create a custom key-
binding to reload the configuration file.

We use the bind command to define a new keybinding. We specify the key we
want to use, followed by the command we want to perform.

For our first keybinding, we’ll set PREFIX r so it reloads our main .tmux.conf file
in the current session.

bind r source-file ~/.tmux.conf

When we define keybindings using bind, we still have to push the PREFIX key
before we can press the newly defined key. And while we just defined a new
command to make reloading the tmux configuration easier, we can’t use it
until we reload the configuration file. So be sure to enter Command mode
with PREFIX : and type

source-file ~/.tmux.conf

one more time.

When we reload the file, we won’t always be able to tell that anything changed,
but we can use the display command to put a message in the status line. Let’s
modify our reload command to display “Reloaded!” when the configuration
file loads:

config/tmux.conf
bind r source-file ~/.tmux.conf \; display "Reloaded!"

We can bind a key to a series of commands by separating the commands with
the \; character combination.

With this keybinding in place, we can make additional changes to the config-
uration file and then immediately activate them by pressing PREFIX r .

18 • Chapter 2. Configuring tmux

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/bhtmux/code/config/tmux.conf
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Joe asks:

Can I Define Keybindings That Don’t Require a
Prefix?

Absolutely. Using the bind command with the -n prefix tells tmux that the keybinding
doesn’t require pressing the prefix. For example,

bind-key -n C-r source-file ~/.tmux.conf

would make CTRL- r reload the configuration file. Unfortunately this would completely
disable that key combination in any application that’s running in a tmux session, so
you’ll want to use this with care.

Sending the Prefix to Other Applications

We’ve remapped CTRL-a as our Prefix, but programs such as Vim, Emacs, and
even the regular Bash shell also use that combination. We need to configure
tmux to let us send that command through when we need it. We can do that
by binding the send-prefix command to a keystroke, like this:

bind C-a send-prefix

After reloading the configuration file, we can send CTRL-a to an application
running within tmux simply by pressing CTRL-a twice.

Splitting Panes

The default keys for splitting panes can be difficult to remember, so let’s set
our own keys that we won’t be able to forget. We’ll set the horizontal split to
PREFIX | and the vertical split to PREFIX - .

bind | split-window -h
bind - split-window -v

At first glance, this may look backwards. The -v and -h flags on split-window
stand for “vertical” and “horizontal” splits, but to tmux, a vertical split means
creating a new pane below the existing pane so the panes are stacked verti-
cally on top of each other. A horizontal split means creating a new pane next
to the existing one so the panes are stacked horizontally across the screen.
So, in order to divide the window vertically, we use a “horizontal” split, and
to divide it horizontally, we use a “vertical” split.

These new shortcuts give us a nice visual association. If we want our windows
split, we simply press the key that looks like the split we want to create.

report erratum • discuss

Customizing Keys, Commands, and User Input • 19

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Remapping Movement Keys

Moving from pane to pane with PREFIX o is a little cumbersome, and using the
arrow keys means we have to take our fingers off the home row. If you use
the Vim text editor, you’re probably familiar with its use of h , j , k , and l for
movement keys. We can remap the movement keys in tmux to these same
keys.

config/tmux.conf
bind h select-pane -L
bind j select-pane -D
bind k select-pane -U
bind l select-pane -R

In addition, we can use PREFIX CTRL-h and PREFIX CTRL- l to cycle through the
windows by binding those keystrokes to the respective commands:

bind -r C-h select-window -t :-
bind -r C-l select-window -t :+

Provided you’ve mapped your CAPS LOCK key to the CTRL key, you can now move
between panes without moving your hands off the home row.

Resizing Panes

To resize a pane, we can enter Command mode and type resize-pane -D to resize
a pane downward one row at a time. We can increase the resizing increment
by passing a number after the direction, such as resize-pane -D 5, but the com-
mand itself is pretty verbose. Let’s make some keybindings to make resizing
panes easier.

Let’s use a variation of the Vim movement keys to resize windows. We’ll use
PREFIX H , PREFIX J , PREFIX K , and PREFIX L to change the size of the panes:

bind H resize-pane -L 5
bind J resize-pane -D 5
bind K resize-pane -U 5
bind L resize-pane -R 5

Notice that we’re using uppercase letters in the configuration file. tmux allows
both lowercase and uppercase letters for keystrokes. You’ll need to use the
SHIFT key to trigger the uppercase keystroke.

Using these movement keys will help us keep track of which way we want the
window size to change. For example, if we have a window divided into two
panes stacked horizontally, like this:

20 • Chapter 2. Configuring tmux

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/bhtmux/code/config/tmux.conf
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

| |
| Pane 1 |
Pane 2

and we want to increase the size of Pane 1, then we’d place our cursor inside
Pane 1 and then press PREFIX J , which will move the horizontal divider down-
ward. If we pressed PREFIX K , we would move the horizontal divider up.

We resize panes in increments, so that means that each time we want to resize
the pane, we need to use the prefix. But if we use the -r flag, we can specify
that we want the key to be repeatable, meaning we can press the prefix key
only once and then continuously press the defined key within the repeat
limit.

bind -r H resize-pane -L 5
bind -r J resize-pane -D 5
bind -r K resize-pane -U 5
bind -r L resize-pane -R 5

The default repeat limit is 500 milliseconds, and we can change that by setting
the repeat-time option to a higher value.

Now let’s turn our attention to how tmux can work with the mouse.

Handling the Mouse

While tmux is meant to be completely keyboard-driven, there are times when
you may find it easier to use the mouse. If your Terminal is set up to forward
mouse clicks and movement through to programs in the terminal, then you
can tell tmux how to handle certain mouse events.

Sometimes it’s nice to be able to scroll up through the Terminal buffer with
the mouse wheel, or to select windows and panes, especially when you’re just
getting started with tmux. To configure tmux so we can use the mouse, we
need to enable mouse mode.

setw -g mode-mouse on

We could also configure tmux so it will let us use the mouse to select a pane,
resize a pane, or even let us click on the window list to select a window. We
would do that by setting the corresponding options, like this:

report erratum • discuss

Customizing Keys, Commands, and User Input • 21

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

set -g mouse-select-pane on
set -g mouse-resize-pane on
set -g mouse-select-window on

These can be handy additions to your configuration, but remember that using
the mouse with tmux will slow you down. Even though being able to scroll
and click might seem like a neat idea, you should learn the keyboard equiva-
lents for switching panes and moving forward and backward through the
buffers. So, for our configuration file, we’re going to disable all the mouse
options. We can do that explicitly like this:

setw -g mode-mouse off
set -g mouse-select-pane off
set -g mouse-resize-pane off
set -g mouse-select-window off

or by simply disabling the mouse entirely:

config/tmux.conf
setw -g mode-mouse off

Setting this option prevents us from accidentally doing things when we select
the Terminal window with our mouse, and it forces us to get more comfortable
with the keyboard.

The flexible configuration system tmux provides lets us completely customize
the way we interact with the interface, but we can also configure its appear-
ance to make its interface easier to see, and in some cases, more informative.

2.3 Visual Styling

tmux gives us quite a few ways to customize our environment’s appearance.
In this section, we’ll walk through configuring some of these options, as we
customize the status line and other components. We’ll start by configuring
the colors for various elements, then we’ll turn our bland status bar into
something that will provide us with some vital information about our
environment.

Configuring Colors

To get the best visual experience out of tmux, we have to make sure that both
our Terminal and tmux are configured for 256 colors. Let’s start by configuring
our Terminal first.

We can use a simple Perl script1 to test the color modes in our Terminal.

1. http://www.vim.org/scripts/script.php?script_id=1349

22 • Chapter 2. Configuring tmux

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/bhtmux/code/config/tmux.conf
http://www.vim.org/scripts/script.php?script_id=1349
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Figure 5—The Terminal properly displaying 256 colors

$ wget http://www.vim.org/scripts/download_script.php?src_id=4568 -O
colortest

$ perl colortest -w

You should see something like Figure 5, The Terminal properly displaying 256
colors, on page 23 in your Terminal if you’re configured properly.

If you’re using Linux, you might need to add

[-z "$TMUX"] && export TERM=xterm-256color

to your .bashrc file to enable a 256-color Terminal. This conditional statement
ensures that the TERM variable is only set outside of tmux, since tmux sets
its own terminal.

report erratum • discuss

Visual Styling • 23

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Figure 6—iTerm 2 settings for tmux

If you’re using a Mac, you should know that the Terminal app in Snow
Leopard only displays 16 colors. You’ll need to install an alternative terminal
such as iTerm22 to get full color support.

If you don’t see the correct number of colors, configure your Terminal to use
xterm’s 256 mode. In iTerm2, you can find this by editing the default profile
and changing the Terminal mode to xterm-256color as shown in Figure 6, iTerm
2 settings for tmux, on page 24.

Also, ensure that your Terminal emulator supports displaying UTF-8 charac-
ters so that visual elements such as the pane dividers appear as dashed lines.

In order to make tmux display things in 256 colors, we add this line to our
.tmux.conf file:

config/tmux.conf
set -g default-terminal "screen-256color"

Once the right color mode is set, you’ll find it much easier to use programs
such as Vim from within tmux, especially when you are using more complex
color schemes for syntax highlighting. Just take a look at Figure 7, 16 colors
vs. 256 Colors in Vim, on page 25 to see the difference. Now let’s configure
the appearance of tmux’s components, starting with colors.

2. http://www.iterm2.com

24 • Chapter 2. Configuring tmux

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/bhtmux/code/config/tmux.conf
http://www.iterm2.com
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Figure 7—16 colors vs. 256 Colors in Vim

Changing Colors

We can change the colors of several parts of the tmux interface, including the
status bar, window list, command area, and even the pane dividers.

tmux provides variables we can use to specify colors, including black, red, green,
yellow, blue, magenta, cyan, or white. We can use colour0 to colour255 on the 256 color
palette. If you look at the output of the colortest program, you can see the color
codes available to you. You can also run this simple shell script to get the
color variable you’d like to use:3

for i in {0..255} ; do
printf "\x1b[38;5;${i}mcolour${i}\n"

done

tmux has specific configuration options to change foreground and background
colors for each of its components. Let’s start exploring these by customizing
the colors of our status bar.

Changing the Status Bar Colors

The default status bar has black text on a bright green background. It’s
pretty bland. Let’s make it have white text on a black background by default.

We use the status-bg and status-fg options to set the foreground and background
colors of the status bar, so our settings would be like this:

set -g status-fg white
set -g status-bg black

Later we’ll customize the colors of the items within the sidebar. Right now
let’s customize the window list.

3. http://superuser.com/questions/285381/how-does-the-tmux-color-palette-work

report erratum • discuss

Visual Styling • 25

Download from Wow! eBook <www.wowebook.com>

http://superuser.com/questions/285381/how-does-the-tmux-color-palette-work
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Changing the Window List Colors

We want to make it more apparent which window is active, so we’ll style the
active window red and the inactive windows cyan. To style the regular win-
dows, we use set-window-option, like this:

config/tmux.conf
setw -g window-status-fg cyan
setw -g window-status-bg default
setw -g window-status-attr dim

We can use default for a value so it inherits from the color of the status bar.
To style the active window, we use a similar set of options:

setw -g window-status-current-fg white
setw -g window-status-current-bg red
setw -g window-status-current-attr bright

This takes care of the window list, but we can also customize the colors of
the pane dividers.

Changing Pane Divider Colors

We can color the pane dividers, which is nice, but we can also define colors
to make the active pane more apparent, as in Figure 8, The active pane, on
page 27.

Panes have both foreground and background colors, so we need to set the
variables accordingly:

set -g pane-border-fg color
set -g pane-border-bg color

set -g pane-active-border-fg color
set -g pane-active-border-bg color

The foreground color of a pane is the actual dashed line that makes up the
border. The background color, by default, is black, but if we color it in when
the pane is active, we can make the active pane extremely noticeable.

set -g pane-border-fg green
set -g pane-border-bg black
set -g pane-active-border-fg white
set -g pane-active-border-bg yellow

Before we move on to the status bar, let’s touch up the tmux command line.

26 • Chapter 2. Configuring tmux

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/bhtmux/code/config/tmux.conf
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Figure 8—The active pane

Customizing the Command Line

We can also customize the command line, where we enter tmux commands
and see alert messages. The approach is almost identical to the way we styled
the status line itself.

Let’s change the background color to black and the text color to white. We’ll
use a bright white so the message stands out in more detail.

set -g message-fg white
set -g message-bg black
set -g message-attr bright

That was easy. Now let’s change the areas of the status bar on both sides of
the window list.

2.4 Customizing the Status Bar

The tmux status bar can display pretty much any information we want. We
can use some predefined components or create our own by executing shell
commands.

report erratum • discuss

Customizing the Status Bar • 27

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

The status bar, by default, looks like this:

[development] 0:bash* "example.local" 00:44 02-Nov-1

On the left side, we have the name of the tmux session followed by the list of
windows. The list of windows shows the numerical index of the current window
and its name. On the right side, we have the hostname of our server followed
by the date and time. Let’s customize the content of our status bar.

Configuring Status Bar Items

The status bar consists of three components: a left panel, the window list,
and a right panel. We can change the content in the left or right panels of the
status bar using a combination of text and variables. Table 1, Status line
variables, on page 28 shows the possible variables we can use in our status
bar.

DescriptionVariable

Hostname of local host#H
Hostname of local host without the domain name#h
Current window flag#F
Current window index#I
Current pane index#P
Current session name#S
Current window title#T
Current window name#W
A literal ###
First line of the shell command’s output#(shell-command)
Color or attribute change#[attributes]

Table 1—Status line variables

For example, if we wanted to show just the name of the current tmux session
on the left side, we’d use the set-option -g status-left option with the #S value, like
this:

set -g status-left "#S"

But we can also make it stand out more by using an attribute to set the
foreground color, like this:

set -g status-left "#[fg=green]#S"

28 • Chapter 2. Configuring tmux

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

We can add as many attributes and items to the status bar as we want. To
demonstrate, let’s alter the left side of the status bar so it shows the session
name in green, the current window number in yellow, and the current pane
in cyan.

set -g status-left "#[fg=green]#S #[fg=yellow]#I #[fg=cyan]#P"

We can add any arbitrary text into the status bar, too. Let’s add text to make
the session, window, and pane more noticeable, like this:

config/tmux.conf
set -g status-left-length 40
set -g status-left "#[fg=green]Session: #S #[fg=yellow]#I #[fg=cyan]#P"

We set the status-left-length option because the output we’ve specified is too long
for the default length, so we have to make that region wider.

We can also configure the right side of the status bar. Let’s add the current
date and time.

set -g status-right "#[fg=cyan]%d %b %R"

This formats the date as “13-Jan 13:45,” but you can format it however you’d
like, using the standard strftime() time formatting mechanism used in many
programming languages.4

It’s a good idea to turn on UTF-8 support in the status bar, especially if you’re
interested in using those characters.

set -g status-utf8 on

We can take things a step further by incorporating shell commands into the
mix by using the #(shell-command) variable to return the result of any external
command-line program into the status bar. We’ll go into this in detail in
Adding Battery Life to the Status Line, on page 66.

Keeping Status Bar Info Up to Date

We’ve added the current time and some other dynamic information to our
status bar, but we need to tell tmux how often to refresh that information
periodically. By default, tmux refreshes the status bar every 15 seconds. We
can specify exactly how quickly tmux refreshes its status bar with set-option
-g status-interval followed by the refresh interval in seconds, like this:

set -g status-interval 60

4. See http://www.foragoodstrftime.com/ for a handy tool to help you find the perfect time format.

report erratum • discuss

Customizing the Status Bar • 29

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/bhtmux/code/config/tmux.conf
http://www.foragoodstrftime.com/
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

This would refresh the status bar every 60 seconds. Keep in mind that if
you’re firing off shell commands, those will be executed once per interval, so
be careful not to load too many resource-intensive scripts.

Centering the Window List

We can also control the placement of the window list. By default, the window
list is left-aligned, but we can center the window list in between the left and
right status areas with a single configuration change:

config/tmux.conf
set -g status-justify centre

With this in place, the window list appears centered. As we create new win-
dows, the window list shifts accordingly, staying in the center of the status bar.

Identifying Activity in Other Windows

In the same way, we want to be notified when something happens in one of
the other windows in our session so we can react to it. We’ll do that by adding
a visual notification, like this:

setw -g monitor-activity on
set -g visual-activity on

Now when one of the other windows has some activity, it’ll stand out with a
cyan background, like the “webserver” window shown here:

2.5 What’s Next?

We’ve built up a pretty solid configuration file throughout this chapter. Look
at Appendix 1, Our Configuration, on page 69 to see the whole .tmux.conf file.

We can define many additional options in our .tmux.conf file. For example, in
Chapter 3, Scripting Customized tmux Environments, on page 33, we’ll discuss
how to set up a custom default work environment using project-specific
configuration files.

In addition, you can configure a default configuration for your system in
/etc/tmux.conf. This is great for situations where you’ve set up a shared server
so members of your team can collaborate, or if you just want to ensure that
every user on the system has some sensible defaults.

30 • Chapter 2. Configuring tmux

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/bhtmux/code/config/tmux.conf
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Now that we have a configuration defined, let’s look at how we can create our
own custom development environments with scripts so we can more easily
take advantage of these panes and windows without having to set them up
each time we start our day.

For Future Reference

DescriptionCommand

Sets the key combination for the Prefix key.set -g prefix C-a
Sets the amount of time (in milliseconds) tmux waits
for a keystroke after pressing PREFIX .

set -sg escape-time n

Loads a configuration file. Use this to reload the existing
configuration or bring in additional configuration options
later.

source-file [file]

Configures tmux to send the prefix when pressing the
PREFIX combination twice consecutively.

bind C-a send-prefix

Creates a keybinding that executes the specified
command. Can be shortened to bind

bind-key [key] [com-
mand]

Creates a keybinding that is repeatable, meaning you
only need to press the PREFIX key once, and you can press

bind-key -r [key] [com-
mand]

the assigned key repeatedly afterwards. This is useful
for commands where you want to cycle through elements
or resize panes. Can be shortened to bind.
Removes a defined keybinding so it can be bound to a
different command. Can be shortened to unbind.

unbind-key [key]

Displays the given text in the status message.display-message or dis-
play

Sets options for sessions. Using the -g flag sets the
option for all sessions.

set-option [flags] [option]
[value]

Sets options for windows, such as activity notifications,
cursor movement, or other elements related to windows
and panes.

set-window-option
[option] [value]

Appends values onto existing options rather than
replacing the option’s value.

set -a

report erratum • discuss

What’s Next? • 31

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

CHAPTER 3

Scripting Customized tmux Environments
You probably run a wide collection of tools and programs as you work on
your projects. If you’re working on a web application, you most likely need to
have a command shell, a text editor, a database console, and another window
dedicated to running your automated test suite for your application. That’s
a lot of windows to manage, and a lot of commands to type to get it all fired
up.

Imagine being able to come to your workstation, ready to tackle that new
feature, and being able to bring every one of those programs up, each in its
own pane or window in a single tmux session, using a single command. We
can use tmux’s client-server model to create custom scripts that build up our
development environments, splitting windows and launching programs for
us automatically. We’ll explore how to do this manually first, and then we’ll
look at more advanced automatic tools.

3.1 Creating a Custom Setup with tmux Commands

We’ve already explored how we use the tmux command to create new tmux
sessions, but the tmux command takes many other options. We can take an
existing session and split its windows into panes, change layouts, or even
start up applications within the session.

The key to this is the -t switch, or the “target.” When we have a named tmux
session, we can attach to it like this:

$ tmux attach -t [session_name]

We use this target switch to direct the command to the appropriate tmux
session. So, if we create a new tmux session called “development,” like this:

$ tmux new-session -s development

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

and we then detach from the session with PREFIX d , then we could split that
window horizontally by issuing this command:

$ tmux split-window -h -t development

When we attach to the window again, we’ll have our window split into two
panes.

$ tmux attach -t development

In fact, we don’t even have to detach from a tmux session to send commands.
We can open another terminal and split the window again, but this time with
a vertical split:

$ tmux split-window -v -t development

Using this approach, we can customize existing environments easily. Let’s
explore the various commands by creating our own development environment.

Scripting a Project Configuration

In Chapter 1, Learning The Basics, on page 1, we discussed tmux commands
such as new-session and new-window. Let’s write a simple script using these and
similar commands that creates a new tmux session and creates a window
with a couple panes and a couple windows. To top it off, we’ll launch applica-
tions in each of the panes.

Let’s start by creating a new script called development in our home directory.
We’ll make this script executable too, so we can run it like a regular command.

$ touch ~/development
$ chmod +x ~/development

Inside this new file, we’ll first create a new tmux session called “development.”

scripting/development
tmux new-session -s development -n editor -d

We’re passing a couple additional parameters when we create this new session.
First, we’re creating this session and naming it with the -s flag like we’ve done
before. Then we’re giving the initial window a name of “editor,” and immedi-
ately detaching from this new session with the -d flag.

When we start up our session, we want to change to the directory for our
project. We’ll call that devproject. And before we can change to that folder, we’d
better create it first.

$ mkdir ~/devproject

34 • Chapter 3. Scripting Customized tmux Environments

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/bhtmux/code/scripting/development
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

With the folder created, we add a line to our configuration that uses tmux’s
send-keys command to change the directory.

tmux send-keys -t development 'cd ~/devproject' C-m

We place C-m at the end of the line to send the Carriage Return sequence,
represented by Control-M.1 We can then repeat this command to open the
Vim text editor in that window, like this:

tmux send-keys -t development 'vim' C-m

With these three commands, we’ve created a new session, changed to a
directory, and opened a text editor, but our environment isn’t yet complete.
Let’s split the main editor window so we have a small terminal window on the
bottom. We do this with the split-window command. In our script, add this line:

tmux split-window -v -t development

This splits the main window in half horizontally. We could have specified a
percentage using something like

tmux split-window -v -p 10 -t development

but instead, we’ll just leave the split-window command as is and then select one
of the default tmux layouts—the main-horizontal one—by adding this to our
configuration:

tmux select-layout -t development main-horizontal

We’ve created our first window and split it into two panes, but the bottom
pane needs to open in the project folder. We already know how we send
commands to tmux instances, but now we have to target those commands
at specific panes and windows.

Targeting Specific Panes and Windows

With commands such as send-keys, we can specify not only the target session,
but also the target window and pane. In our configuration file back in Chapter
2, Configuring tmux, on page 15, we specified a base-index of 1, meaning that
our window numbering starts at 1. This base index doesn’t affect the panes,
though, which is why we also set the pane-base-index to 1. In our case, we have
two panes in our current setup, as in Figure 9, Two panes, on page 36

We have the Vim text editor open in Pane 1, and we want to send a command
to Pane 2 that changes to our project directory. We target a pane using the

1. http://en.wikipedia.org/wiki/Carriage_return

report erratum • discuss

Creating a Custom Setup with tmux Commands • 35

Download from Wow! eBook <www.wowebook.com>

http://en.wikipedia.org/wiki/Carriage_return
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

| |
| pane 1 |
pane 2

Figure 9—Two panes

format [session]:[window].[pane]—in our case, development:1.2. So, we add this line
to our configuration script, and we get exactly what we want.

tmux send-keys -t development:1.2 'cd ~/devproject' C-m

We’re almost there. We can use what we’ve learned to finish up our configu-
ration by adding a couple additional windows to the session.

Creating and Selecting Windows

We want a second window in our session that will be a full-screen console.
We can create that new window using the new-window command.

tmux new-window -n console -t development
tmux send-keys -t development:2 'cd ~/devproject' C-m

After we create the window, we use send-keys to once again change into our
project directory. We only have one pane in our new window, so we only have
to specify the window number in the target.

When we start up our session, we want our first window to be displayed, and
we do that with the select-window command:

tmux select-window -t development:1
tmux attach -t development

We could continue to add to this script, creating additional windows and
panes, starting up remote connections to our servers, tailing log files, connect-
ing to database consoles, or even running commands that pull down the latest
version of our code when we start working. But we’ll stop here, and simply
end our script by finally attaching to the session so it shows up on the screen,
ready for us to begin working. Our entire script looks like this:

tmux new-session -s development -n editor -d
tmux send-keys -t development 'cd ~/devproject' C-m
tmux send-keys -t development 'vim' C-m
tmux split-window -v -t development
tmux select-layout -t development main-horizontal
tmux send-keys -t development:1.2 'cd ~/devproject' C-m

36 • Chapter 3. Scripting Customized tmux Environments

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

tmux new-window -n console -t development
tmux send-keys -t development:2 'cd ~/devproject' C-m
tmux select-window -t development:1
tmux attach -t development

and when we run it with

$ ~/development

we see an environment that looks like Figure 10, Our scripted development
environment, on page 38.

One drawback to this approach is that this script creates a brand new session.
It won’t work properly if you run it a second time while the development session
is currently running. You could modify the script to check if a session with
that name already exists by using the tmux has-session command and only create
the session if it’s not there, like this:

scripting/reattach/development
tmux has-session -t development
if [$? != 0]
then

tmux new-session -s development -n editor -d
tmux send-keys -t development 'cd ~/devproject' C-m
tmux send-keys -t development 'vim' C-m
tmux split-window -v -t development
tmux select-layout -t development main-horizontal
tmux send-keys -t development:1.2 'cd ~/devproject' C-m
tmux new-window -n console -t development
tmux send-keys -t development:2 'cd ~/devproject' C-m
tmux select-window -t development:1

fi
tmux attach -t development

This approach works well for a single project setup. You could modify this
further by using a variable for the project name to make the script more
generic, but let’s look at a couple other ways we can configure things to
manage multiple projects.

3.2 Using tmux Configuration for Setup

The .tmux.conf file itself can include commands that set up a default environ-
ment. If we wanted every tmux session to start in the same default folder, or
automatically open a split window, we could bake that right in to our default
configuration, simply by using the appropriate commands.

But we can also specify a configuration file when we start up an instance of
tmux, by using the -f flag. This way we don’t have to change our original

report erratum • discuss

Using tmux Configuration for Setup • 37

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/bhtmux/code/scripting/reattach/development
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Figure 10—Our scripted development environment

default configuration file, and we can check our configuration file in with our
project. We can also set up our own per-project configuration options, such
as new keyboard shortcuts.

Let’s try this out by creating a file called app.conf. Inside this file, we can use
the same commands we learned about in the previous section, but since we’re
inside the configuration file rather than a shell script, we don’t have to
explicitly prefix each command with tmux.

scripting/app.conf
source-file ~/.tmux.conf
new-session -s development -n editor -d
send-keys -t development 'cd ~/devproject' C-m
send-keys -t development 'vim' C-m
split-window -v -t development
select-layout -t development main-horizontal
send-keys -t development:1.1 'cd ~/devproject' C-m
new-window -n console -t development
send-keys -t development:2 'cd ~/devproject' C-m
select-window -t development:1

Notice that we’re including our original .tmux.conf file on the first line. This way
we’ll have all our environment settings we previously defined, including our
keybindings and status bar settings. This isn’t mandatory, but if we left this
off we’d have to use all the default keybindings and options, or we’d have to
define our own options in this file.

38 • Chapter 3. Scripting Customized tmux Environments

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/bhtmux/code/scripting/app.conf
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

To use this configuration file, we pass the -f flag followed by the path to the
config file. We also have to start tmux with the attach command, like this:

$ tmux -f app.conf attach

This is because, by default, tmux always calls the new-session command when
it starts. Our file creates a new session already, so we’d have two tmux ses-
sions running if we left off attach.

This approach gives us a lot of flexibility, but we can gain even more by using
a command-line tool called tmuxinator.

3.3 Managing Configuration with tmuxinator

tmuxinator is a simple tool we can use to write and manage different tmux
configurations. We define our window layouts and commands in a simple
YAML format, and then launch them with the tmuxinator command. Unlike the
other approaches, tmuxinator offers a central location for our configurations
and a much easier dialect for creating complex layouts. It also lets us specify
commands that should always run before each window gets created.

tmuxinator requires the Ruby interpreter, so you’ll need to have that on your
system. Mac OS X users already have Ruby installed, and Linux users can
usually install Ruby through a package manager. However, if you plan to use
Ruby for anything beyond tmuxinator, I strongly encourage you to install
Ruby through RVM by following along with the instructions on the RVM web
site.2

We install tmuxinator using Rubygems, the package management system for
Ruby.

$ gem install tmuxinator

If you’re not using RVM, you’ll need to run this as root or with the sudo com-
mand.

tmuxinator needs the $EDITOR shell environment to be defined, so if you haven’t
set yours yet, you’ll want to do that in your .bashrc file on Linux, or .bash_profile
on OS X. For example, to define Vim as the default editor, you’d add this line
to your Bash configuration:

export EDITOR=vim

Now we can create a new tmuxinator project. Let’s call it “development.”

2. http://rvm.beginrescueend.com/

report erratum • discuss

Managing Configuration with tmuxinator • 39

Download from Wow! eBook <www.wowebook.com>

http://rvm.beginrescueend.com/
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

$ tmuxinator open development

This pops open the editor we assigned to the $EDITOR environment variable
and displays the default project configuration, which looks like this:

scripting/default.yaml
project_name: Tmuxinator
project_root: ~/code/rails_project
socket_name: foo # Not needed. Remove to use default socket
rvm: 1.9.2@rails_project
pre: sudo /etc/rc.d/mysqld start
tabs:
- editor:

layout: main-vertical
panes:

- vim
- #empty, will just run plain bash
- top

- shell: git pull
- database: rails db
- server: rails s
- logs: tail -f logs/development.log
- console: rails c
- capistrano:
- server: ssh me@myhost

This is an environment that a Ruby on Rails developer who works with Git
might really appreciate. This creates a tmux session with eight windows. The
first window is divided into three panes, using the main-vertical layout scheme.
The rest of the windows launch various servers and consoles, as you can see
in Figure 11, A Rails environment using tmuxinator's defaults, on page 41.

As you can see, tmuxinator makes it trivial to define not only the windows
and panes, but also what commands we want to execute in each one. In
addition, we can specify a command we’d like to run when each window loads.
Let’s remove this configuration and construct our development environment,
with Vim in the top window and a terminal on the bottom, starting in the
~/devproject folder:

scripting/development.yaml
project_name: devproject
project_root: ~/devproject
tabs:
- editor:

layout: main-horizontal
panes:

- vim
- #empty, will just run plain bash

- console: # empty

40 • Chapter 3. Scripting Customized tmux Environments

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/bhtmux/code/scripting/default.yaml
http://media.pragprog.com/titles/bhtmux/code/scripting/development.yaml
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Figure 11—A Rails environment using tmuxinator’s defaults

The yml file format uses two spaces for indenting, so it’s really important to
ensure you format the file correctly and that you don’t accidentally use tabs
when you write the file.

To fire up our new environment, we save the config file and then run this:

$ tmuxinator devproject

tmuxinator automatically loads up our original .tmux.conf file, applies our set-
tings, and then arranges the windows and panes for us, just like we specified.
If we want to make more changes to our environment, we can use

$ tmuxinator open devproject

again.

By default, the configuration files for tmuxinator are located in ~/.tmuxinator/,
so you can find those and back them up, or share them with others.

Under the hood, tmuxinator is simply constructing a script that executes the
individual tmux commands just like we did when we wrote our own script.
However, it’s a nicer syntax that’s pretty easy to follow. It does require a Ruby
interpreter on your machine though, so it may not be something you’ll set up
on every environment where you’d like to use tmux.

report erratum • discuss

Managing Configuration with tmuxinator • 41

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

3.4 What’s Next?

You can use every tmux command through the shell, which means you can
write scripts to automate nearly every aspect of tmux, including running
sessions. For example, you could create a keyboard binding that sources a
shell script that divides the current window into two panes and logs you into
your production web and database servers. We’ll use that technique in
Chapter 6, Workflows, on page 59 to force panes to open in the current
directory.

We’ve discussed three separate ways to script out our tmux environment,
and we’ve tinkered around with our configuration enough. We now know how
to set up our projects, move around panes and windows, and launch our
consoles. But as we work with applications within tmux sessions, the results
of our tests or application logs start to scroll off the screen. So let’s learn how
to handle output buffers and how to copy and paste text.

For Future Reference

Scriptable tmux Commands

DescriptionCommand

Creates a session named “development” and
names the first window “editor.”

tmux new-session -s develop-
ment -n editor

Attaches to a session named “development.”tmux attach -t development
Sends the keystrokes to the “development” ses-
sion’s active window or pane. C-m is equivalent to
pressing the ENTER key.

tmux send-keys -t development
'[keys]' C-m

Sends the keystrokes to the “development” ses-
sion’s first window and first pane. C-m is equivalent
to pressing the ENTER key.

tmux send-keys -t develop-
ment:1.0 '[keys]' C-m

Selects the first window of “development,” making
it the active window.

tmux select-window -t develop-
ment:1

Splits the current window in the “development”
session vertically, dividing it in half horizontally
and sets its height to 10% of the total window size.

tmux split-window -v -p 10 -t
development

Sets the layout for the “development”session to
main-horizontal.

tmux select-layout -t develop-
ment main-horizontal

Loads the app.conf configuration file and attaches
to a session created within the app.conf file.

tmux -f app.conf attach

42 • Chapter 3. Scripting Customized tmux Environments

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

tmuxinator Commands

DescriptionCommand

Opens the configuration file for the project name in
the default text editor. Creates the configuration if
it doesn’t exist.

tmuxinator open [name]

Loads the tmux session for the given project. Creates
the session from the contents of the project’s config-

tmuxinator [name]

uration file if no session currently exists, or attaches
to the session.

Lists all current projects.tmuxinator list
Copies a project configuration.tmuxinator copy [source] [des-

tination]
Deletes the specified project.tmuxinator delete [name]
Deletes all current projects.tmuxinator implode
Looks for problems with the tmuxinator and system
configuration.

tmuxinator doctor

report erratum • discuss

What’s Next? • 43

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

CHAPTER 4

Working With Text and Buffers
Throughout the course of your average day, you’ll copy and paste text more
times than you keep track of. When you’re working with tmux, you will
eventually come to the point where you need to scroll backwards through the
terminal’s output buffer to see something that scrolled off the screen. You
might also need to copy some text and paste it into a file or into another
program. This chapter is all about how to manage the text inside your ses-
sions. You’ll see how to use the keyboard to scroll through tmux’s output
buffer, how to work with multiple paste buffers, and how to work with the
system clipboard.

4.1 Scrolling Through Output with Copy Mode

When we work with programs in the Terminal, it’s common that the output
from these programs scrolls off the screen. But when we use tmux, we can
use the keyboard to move backwards through the output buffer so we can
see what we missed. This is especially useful for those times when we’re
running tests or watching log files.

Pressing PREFIX [places us in Copy mode. We can then use our movement keys
to move our cursor around the screen. By default, the arrow keys work. But
in Chapter 2, Configuring tmux, on page 15, we set our configuration file to
use Vim keys for moving between windows and resizing panes so we wouldn’t
have to take our hands off the home row. tmux has a vi mode for working
with the buffer as well. To enable it, add this line to .tmux.conf:

config/tmux.conf
setw -g mode-keys vi

With this option set, we can use h , j , k , and l to move around our buffer.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/bhtmux/code/config/tmux.conf
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

To get out of Copy mode, we just press the ENTER key. Moving around one
character at a time isn’t very efficient. Since we enabled vi mode, we can also
use some other visible shortcuts to move around the buffer.

For example, we can use w to jump to the next word and b to jump back one
word. And we can use f , followed by any character, to jump to that character
on the same line, and F to jump backwards on the line.

Moving Quickly Through the Buffer

When we have several pages of buffered output, moving the cursor around
to scroll isn’t going to be that useful. Instead of moving word by word or
character by character, we can scroll through the buffer page by page, or
jump to the beginning or end of the buffer.

We can move up one page with CTRL-b and down one page with CTRL- f . We can
jump all the way to the top of the buffer’s history with g , and then jump all
the way to the bottom with G .

Searching Through the Buffer

We don’t have to browse through the hundreds of lines of content page by
page if we know what we’re looking for. By pressing ? in Copy mode, we can
search upwards for phrases or keywords. Simply press ? , type in the search
phrase, and press ENTER to jump to the first occurrence of the phrase. Then
press n to jump to the next occurrence, or N to move to the previous.

To search downward, press / instead of ? . Pressing n then jumps to the next
occurrence and N jumps to the previous occurrence.

Learning to move around the buffer this way will dramatically speed you up.
It’s much faster to type the word you want to move to instead of using the
arrows to move around, especially if you’re looking through the output of log
files.

This is just the beginning of how we can work with our buffers. Let’s explore
how we can copy text from one pane and paste it to another. This is Copy
mode, after all.

4.2 Copying and Pasting Text

Moving around and looking for things in our output buffer is usually only
half the equation. We often need to copy some text so we can do something
useful with it. tmux’s Copy mode gives us the opportunity to select and copy
text to a paste buffer so we can dump that text elsewhere.

46 • Chapter 4. Working With Text and Buffers

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

To copy text, we enter Copy mode and move the cursor to where we want to
start selecting text. We then press SPACE and move the cursor to the end of
the text. When we press ENTER , the selected text gets copied into a paste buffer.

To paste the contents we just captured, we switch to Copy mode and press
PREFIX] .

Let’s look at a few specific ways to copy and paste text from our main output
buffer.

Capturing a Pane

tmux has a handy shortcut that copies the entire visible contents of a pane
to a paste buffer. We simply enter Command mode with PREFIX : and type

capture-pane

We can then paste the contents into the currently focused session by using
PREFIX] .

Showing and Saving the Buffer

We can display the contents of our paste buffer by using the show-buffer com-
mand, which we can execute in Command mode, or from our Terminal session
with

$ tmux show-buffer

However, by using the save-buffer command, we can save the buffer to a file,
which can often be a real time saver. In fact, we can capture the current buffer
to a text file like this:

$ tmux capture-pane && tmux save-buffer buffer.txt

or via Command mode with capture-pane; save-buffer buffer.txt. We could easily map
that to a keystroke if we wanted.

Using Multiple Paste Buffers

tmux maintains a stack of paste buffers, which means we can copy text
without replacing the buffer’s existing content. This is much more flexible
than the traditional clipboard offered by the operating system.

Every time we copy some new text, tmux creates a new paste buffer, putting
the new buffer at the top of the stack.

To demonstrate, let’s fire up a new tmux session and load up a text editor
such as Vim or Nano. In the editor, type the following sentences, one per line:

report erratum • discuss

Copying and Pasting Text • 47

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

First sentence is first.
Next sentence is next.
Last sentence is last.

Now let’s copy some text to the paste buffer. Enter Copy mode with PREFIX [.
Move to the start of the first sentence, press SPACE to start selecting text, move
to the end of the first sentence, and press ENTER to copy the selection. Repeat
this with the second and third sentences.

Each time we copied text, tmux created a new buffer. We can see these buffers
with the list-buffers command.

0: 22 bytes: "Last sentence is last."
1: 22 bytes: "Next sentence is next."
2: 24 bytes: "First sentence is first."

Pressing PREFIX] always pastes buffer 0, but we can issue the command choose-
buffer to select a buffer and paste the contents into the focused pane.

Split the current window in half and launch Nano in the second pane, then
enter Command mode and type this:

choose-buffer

You’ll be presented with a list that looks like Figure 12, Choosing a buffer of
text to insert, on page 49. You can select any entry in the list, press ENTER , and
the text will be inserted into the selected pane.

This is an excellent way to manage multiple bits of text, especially in text-
based environments where you don’t have access to a real clipboard.

These buffers are shared across running tmux sessions, too, so we can take
content from one session and paste it into another.

Remapping Copy and Paste Keys

If you use Vim and you’d like to make the copy and paste command keys a
little more familiar, you can remap the keys in your configuration. For
example, you can remap the ESCAPE key to switch to Copy mode, use y to “yank”
text into the buffer, use v to start Visual mode to select your text, and use p
to paste the text:

unbind [
bind Escape copy-mode
unbind p
bind p paste-buffer
bind -t vi-copy 'v' begin-selection
bind -t vi-copy 'y' copy-selection

48 • Chapter 4. Working With Text and Buffers

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Figure 12—Choosing a buffer of text to insert

This can be a real productivity boost if you happen to do a lot of copying and
pasting between windows and panes and are already comfortable with the
keys that Vim uses.

4.3 Working with the Clipboard on Linux

Using the xclip utility,1 you can integrate your buffers with the Linux system
clipboard so you can more easily copy and paste between programs.

First, you have to install xclip. On Ubuntu, use this command:

$ sudo apt-get install xclip

Then we use tmux’s save-buffer and set-buffer commands with xclip.

To copy the current buffer to the system clipboard, we add this command to
our .tmux.conf file:

bind C-c run "tmux save-buffer - | xclip -i -sel clipboard"

1. http://sourceforge.net/projects/xclip/

report erratum • discuss

Working with the Clipboard on Linux • 49

Download from Wow! eBook <www.wowebook.com>

http://sourceforge.net/projects/xclip/
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

This configures PREFIX CTRL-c so it captures the current buffer and pipes its
output to xclip. We then add this line to our configuration so we can use PREFIX
CTRL-v to paste text from the system clipboard into a tmux session:

bind C-v run "tmux set-buffer \"$(xclip -o -sel clipboard)\"; tmux paste-buffer"

This pulls the content from xclip into a new tmux buffer and then pastes it
into the selected tmux window or pane.

4.4 Using OS X Clipboard Commands

If you’re a Mac user, you may be familiar with OS X’s command-line clipboard
utilities pbcopy and pbpaste. These simple utilities make it a snap to work with
the clipboard. The pbcopy command captures text to the system clipboard,
and the pbpaste command pastes content out. For example, you can use pbcopy
and cat together to easily put the contents of your .tmux.conf file into the clip-
board so you can paste it in an email or on the Web, like this:

$ cat ~/.tmux.conf | pbcopy

This is a pretty handy way to work with text, but tmux doesn’t have access
to these utilities, so we can’t use them while running inside a tmux session.
We can use a wrapper program written by Chris Johnsen to get around this
limitation.2

To use this wrapper script, we first clone the repository and compile the
wrapper.

$ git clone https://github.com/ChrisJohnsen/tmux-MacOSX-pasteboard.git
$ cd tmux-MacOSX-pasteboard/
$ make reattach-to-user-namespace

Then, we move the file to someplace on our PATH, like /usr/local/bin:

$ sudo mv reattach-to-user-namespace /usr/local/bin

Finally, we configure tmux to use the wrapper, by adding this line to .tmux.conf:

set -g default-command "reattach-to-user-namespace -l /bin/bash"

This configures the default command that tmux uses for new windows so it
loads the Bash shell through the wrapper script. If you use a shell other than
Bash, you’d specify its path or command instead.

2. https://github.com/ChrisJohnsen/tmux-MacOSX-pasteboard

50 • Chapter 4. Working With Text and Buffers

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

https://github.com/ChrisJohnsen/tmux-MacOSX-pasteboard
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Once we reload the configuration file, we’ll be able to use the pbcopy command
again. And as an added bonus, we can send the contents of the current tmux
buffer to the system clipboard:

$ tmux show-buffer | pbcopy

Or we can paste the clipboard contents with this:

$ tmux set-buffer pbpaste; tmux paste-buffer

This means that we can also create keyboard shortcuts to do this, just like
we did with Section 4.3, Working with the Clipboard on Linux, on page 49.
Unfortunately, the wrapper program we’re using doesn’t work with tmux’s run
command. The workaround is to explicitly prefix pbpaste and pbcopy with the
wrapper script. So, to support copying, we’d add a binding like this:

bind C-c run "tmux save-buffer - | reattach-to-user-namespace pbcopy"

And to support pasting from the system clipboard, we’d add this longer
command, which must be all on one line.

bind C-v run "tmux set-buffer $(reattach-to-user-namespace pbpaste);
tmux paste-buffer"

This provides a simple solution to an otherwise fairly complex technical
problem.

4.5 What’s Next?

By using tmux paste buffers to move text around, you gain the ability to have
a clipboard in situations where you might not have one, such as when you’re
logged into the console of a server or without a graphical terminal. Being able
to scroll back through the history of a long console output can be a huge
help. It’s worth installing tmux directly on your servers for that reason alone.

Now that we have a good understanding of how we move around in tmux,
and we know the basics of moving from window to window and pane to pane,
we can start working tmux into our daily routine. For many developers, pair
programming is often part of that routine. Let’s take a look at how we can
use tmux to work with another developer.

report erratum • discuss

What’s Next? • 51

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

For Future Reference

Shortcut Keys

DescriptionShortcut

Enters Copy mode.PREFIX [

Pastes current buffer contents.PREFIX]

Lists all paste buffers and pastes selected buffer contents.PREFIX =

Copy Mode Movement Keys (VI Mode)

DescriptionCommand

Moves the cursor left, down, up, and right,
respectively.

h , j , k , and l

Moves the cursor forward one word at a time.w
Moves the cursor backward one word at a time.b
Moves to the next occurrence of the specified
character.

f followed by any
character

Moves to the previous occurrence of the specified
character.

F followed by any
character

Scrolls up one page.CTRL-b
Scrolls down one page.CTRL- f
Jumps to the top of the buffer.g
Jumps to the bottom of the buffer.G

Starts a search backward through the buffer.?

Starts a search forward through the buffer./

Commands

DescriptionCommand

Displays current buffer contents.show-buffer
Captures the selected pane’s visible contents to a new
buffer.

capture-pane

Lists all paste buffers.list-buffers
Shows paste buffers and pastes the contents of the one
you select.

choose-buffer

Saves the buffer’s contents to the specified file.save-buffer [filename]

52 • Chapter 4. Working With Text and Buffers

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

CHAPTER 5

Pair Programming with tmux
Up until now, we’ve spent time making configuration changes and learning
how to work within tmux. But one of the most popular uses of tmux by
developers is pair programming. It was actually my first introduction to tmux,
and I immediately saw the potential as my friend walked me through using
its various features.

Pair programming has a lot of great benefits. Working with another developer
can help you see things you might not have seen on your own, but unless
you’re physically in the same location, pair programming can be somewhat
difficult. Screen-sharing through iChat, Skype, or even GoToMeeting takes
up a lot of bandwidth and can be dodgy when you’re not using the best
network connection. In this chapter, we’ll explore using tmux for pair program-
ming, so you can work remotely with another developer on even the slowest
hotel Wi-Fi connection.

There are two ways to work with remote users. The first method involves
creating a new user account that you and others share. You set up tmux and
your development environment under that account and use it as a shared
workspace. The second approach uses tmux’s sockets so you can have a
second user connect to your tmux session without having to share your user
account.

Both of these methods have an inherent security flaw: they let someone else
see things on your screen, and in your account. You’re inviting someone in
to potentially look at your files. To get around this, it’s wise to use an inter-
mediate server for pairing. Using a cheap VPS or a virtual machine with
VirtualBox1 and Vagrant2, you can quickly create a development environment

1. https://www.virtualbox.org/
2. http://vagrantup.com/docs/getting-started/index.html

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

https://www.virtualbox.org/
http://vagrantup.com/docs/getting-started/index.html
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

for pairing. In this chapter, we’ll be working with a remote server as we explore
both of these approaches.

5.1 Pairing with a Shared Account

Using a shared account is the simplest way to work with another user. In a
nutshell, you enable SSH access on the machine that will act as the host,
install and configure tmux on that machine, and then create a tmux session
there. The second user logs into that machine with the same user account
and attaches to the session. By using SSH public keys, you can make the
login process somewhat transparent. Let’s walk through the setup. We’ll
assume we’re using a server called puzzles running Ubuntu that has the SSH
daemon installed.

First, we create a “tmux” user on the server. This is the user everyone will
use for the pairing session.

tmux@puzzles$ adduser tmux

With the new account created, we want to configure the account so we can
take SSH keys from other developers and use them to log into this account.
We do this by creating the file ~/.ssh/authorized_keys under the tmux account.
First, we use the su command to switch to the user:

tmux@puzzles$ su tmux

and then we create the .ssh folder and the .ssh/authorized_keys file, setting the
appropriate permissions. Only the tmux user should be allowed to read, write,
or execute this.

tmux@puzzles$ mkdir ~/.ssh
tmux@puzzles$ touch ~/.ssh/authorized_keys
tmux@puzzles$ chmod 700 ~/.ssh
tmux@puzzles$ chmod 600 ~/.ssh/authorized_keys

With this in place, we can transfer our keys over to the server. From our
desktop machine, we take our public key and upload it to the server:

$ scp -p id_rsa.pub tmux@puzzles.local

Back on the server, we add the key to the authorized_keys file.

tmux@puzzles$ cat id_rsa.pub >> ~/.ssh/authorized_keys

We would repeat this process for any other users we wanted to share this
account with.

54 • Chapter 5. Pair Programming with tmux

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

From here, we set up tmux, text editors, compilers, programming languages,
and version control systems just like we would on any other development
environment. Then we can create a new tmux session on the server.

tmux@puzzles$ tmux new-session -s Pairing

Another member of our team can log in to the same machine and attach to
the session with this:

tmux@puzzles$ tmux attach -t Pairing

We can then work collaboratively on our project. What’s more, we can detach
from the session and reattach to it later, which means we can leave our
environment running for days or even weeks at a time. We’d have a persistent
development environment we can log into from anywhere that has a Terminal
with SSH support.

5.2 Using a Shared Account and Grouped Sessions

When two people are attached to the same tmux session, they usually both
see the same thing and interact with the same windows. But there are times
when it’s helpful if one person can work in a different window without com-
pletely taking over control.

Using “grouped sessions,” we can do just that. Let’s demonstrate by creating
a new session on our remote server called groupedsession.

tmux@puzzles$ tmux new-session -s groupedsession

Then, instead of attaching to the session, another user can join that session
by creating a new session by specifying the target of the original session
groupedsession and then specifying his or her own session name, like this:

tmux@puzzles$ tmux new-session -t groupedsession -s mysession

When the second session launches, both users can interact with the session
at the same time, just as if the second user had attached to the session.
However, the users can create windows independent of each other. So, if our
new user creates a window, we’ll both see the new window show up in the
status bar, but we’ll stay on the window we’re currently working in! This is
great for those “Hey, let me just try something” moments, or when one person
wants to use Emacs and the other person prefers Vim, as in Figure 13, Two
users sharing the same session, on page 56.

The second user can kill off his or her session with kill-session and the original
will still exist. However, both sessions will be killed if all windows are closed.

report erratum • discuss

Using a Shared Account and Grouped Sessions • 55

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Figure 13—Two users sharing the same session

Using shared accounts and tmux is an easy way to pair, but it’s not always
desirable to share user accounts with team members. Let’s look at an alter-
native approach.

5.3 Pairing with Separate Accounts and Sockets

Using tmux’s support for sockets, we can create sessions that multiple users
can connect to with ease.

First, let’s create two new user accounts for the session: one called “ted” and
another named “barney.”

tmux@puzzles$ sudo adduser ted

tmux@puzzles$ sudo adduser barney

Next, we create the “tmux” group and the /var/tmux folder we’ll use to hold the
shared sessions.

tmux@puzzles$ sudo addgroup tmux

tmux@puzzles$ sudo mkdir /var/tmux

We change the group ownership of the /var/tmux folder so that our tmux group
has access:

tmux@puzzles$ sudo chgrp tmux /var/tmux

56 • Chapter 5. Pair Programming with tmux

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Then we alter the permissions on the folder so that new files will be accessible
for all members of the tmux group:

tmux@puzzles$ sudo chmod g+ws /var/tmux

Finally, we add Ted and Barney to the tmux group.

tmux@puzzles$ sudo usermod -aG tmux ted

tmux@puzzles$ sudo usermod -aG tmux barney

Creating and Sharing Sessions

Previously, we used the new-session command to create these sessions, but that
uses the default socket location, which won’t be reachable. Instead of creating
named sessions, we create our sessions using the -S switch.

Let’s log in as ted and create a new tmux session using sockets:

ted@puzzles$ tmux -S /var/tmux/pairing

In another Terminal window, we can log in as barney and then attach to the
session. When we attach, we don’t specify the target this time. Instead, we
specify the socket and the location of the socket file, like this:

barney@puzzles$ tmux -S /var/tmux/pairing attach

The barney user now attaches to the tmux session and sees everything that
the ted user sees.

It’s important to note that when using this approach, the .tmux.conf file used
is the one that started up the session. Having two separate accounts doesn’t
mean that each account gets to use its own configuration files within the
tmux session, but it does mean they can customize their accounts for other
purposes, and can each initiate their own tmux session as needed.

5.4 What’s Next?

Now that you know how to use tmux to share your screen with others, you
can use it for remote training, impromptu collaboration on open-source
projects, or even presentations.

In addition, you could use this technique to fire up a tmux session on one of
your production servers, load up monitoring tools or consoles, and then detach
from it, leaving those tools running in the background. Then you simply
connect to your machine, reattach to the session, and everything is back
where you left it. I do something similar with my development environment.
I set up tmux on a VPS, which lets me use nothing more than an iPad, an

report erratum • discuss

What’s Next? • 57

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

SSH client, and a Bluetooth keyboard to hack on code when I’m away from
home. It even works brilliantly over the 3G network.

Pair programming and working remotely are just two examples of how incor-
porating tmux into your workflow can make you more productive. In the next
chapter, we’ll look at other enhancements we can make to our environment
as we explore advanced ways to work with windows, panes, and our system
in general.

For Future Reference

DescriptionCommand

Creates a new session using a socket instead
of a name.

tmux -S [socket]

Attaches to an existing session using a socket
instead of a name.

tmux -S [socket] attach

Creates a connection to a grouped session.tmux new-session -t [existing ses-
sion] -s [new session]

58 • Chapter 5. Pair Programming with tmux

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

CHAPTER 6

Workflows
By itself, tmux is just another terminal with a few bells and whistles that let
us display...more terminal sessions. But tmux makes it easier to work with
the programs we run in those sessions, so this chapter will explore some
common, and uncommon, configurations and commands that you may find
useful in your day-to-day work. You’ll see some advanced ways to manage
your panes and sessions, how to make tmux work with your shell of choice,
how to extend tmux commands with external scripts, and how to create key-
bindings that execute several commands. Let’s start with windows and panes.

6.1 Working Effectively with Panes and Windows

Throughout this book, you’ve seen ways to divide up your tmux sessions into
panes and windows. In this section, we’ll look at more advanced ways to work
with those panes and windows.

Turning a Pane into a Window

Panes are great for dividing up a workspace, but sometimes we need to “pop
out” a pane into its own window to make reading things easier. tmux has a
command to do just that.

Inside any pane, press PREFIX ! and tmux will create a new window from your
pane.

Turning a Window into a Pane

Occasionally, it’s nice to consolidate a workspace. We can easily take a window
and turn it into a pane. To do this, we issue the join-pane command.

When we “join” a pane, we’re essentially moving a pane from one session to
another. We specify the source window and pane, followed by the target

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

window and pane. If we leave the target off, the current focused window
becomes the target.

To illustrate, let’s create a new tmux session with two windows.

$ tmux new-session -s panes -n first -d
$ tmux new-window -t panes -n second
$ tmux attach -t panes

Now, to move the first window into a pane in the second window, we press
PREFIX : to enter Command mode, and type this:

join-pane -s 1

This means “Take window 1 and join it to the current window,” since we didn’t
specify a target.

We can use this technique to move panes around as well. If our first window
had two panes, we could specify the source pane like this, keeping in mind
that while we set our windows to start with an index of one, our panes always
start with an index of zero:

join-pane -s 1.0

Here, we grab the first pane of the first window and join it to our current
window.

To take it a step further, we can even specify a source session, using the
notation [session_name]:[window].[pane], and we can specify a target window using
the -t flag using the same notation.

Maximizing and Restoring Panes

Sometimes we just want a pane to go full-screen for a bit so we can see its
contents, so we use the break-pane command. But then we have to use join-pane
to put it back where it was. It’s a bit of a hassle, but it’s something we can
script quite easily by using a temporary tmux window as a placeholder. Here’s
how.1

First, we’ll unbind the UP arrow key so we can assign it to the new Maximize
command. Then, we create a new keybinding for PREFIX UP that triggers this
sequence of tmux commands:

workflows/tmux.conf
unbind Up
bind Up new-window -d -n tmp \; swap-pane -s tmp.1 \; select-window -t tmp

1. Based on a solution from http://superuser.com/questions/238702/maximizing-a-pane-in-tmux

60 • Chapter 6. Workflows

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/bhtmux/code/workflows/tmux.conf
http://superuser.com/questions/238702/maximizing-a-pane-in-tmux
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

This creates a new window called tmp. By giving it an explicit name, we can
reference it in subsequent commands. When we create the window with the
-d flag, tmux creates the window in the background rather than bringing it
into focus. We then use the swap-pane command to take the pane we’ve
selected and swap it with the pane that exists in the temporary window we
created.

To restore the window, we simply use the swap-pane command to move the
pane from the temporary window into the original window, select the original
pane, and kill off the temporary window. We’ll assign this to PREFIX DOWN , like
this:

unbind Down
bind Down last-window \; swap-pane -s tmp.1 \; kill-window -t tmp

Since it uses last-window to toggle back to the original window, this approach
is really intended to snap a pane full-screen and snap it back into place, but
this simple hack demonstrates tmux’s flexibility. We were able to automate
a series of commands from a single keystroke.

Launching Commands in Panes

In Chapter 3, Scripting Customized tmux Environments, on page 33, we explored
how to use shell commands and send-keys to launch programs in our panes,
but we can execute commands automatically when we launch a window or
a pane.

We have two servers, burns and smithers, which run our web server and database
server respectively. When we start up tmux we want to connect to these
servers using a single window with two panes.

Let’s create a new script called servers.sh and create one session connecting to
two servers:

$ tmux new-session -s servers -d "ssh deploy@burns"
$ tmux split-window -v "ssh dba@smithers"
$ tmux attach -t servers

When we create a new session, we can pass the command we want to execute
as the last argument. In our case we fire off the new session and connect to
burns in the first window, and we detach the session. Then we divide the window
using a vertical split and then connect to smithers.

This configuration has a handy side effect: when we log off of our remote
servers, the pane or window will close.

report erratum • discuss

Working Effectively with Panes and Windows • 61

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Opening New Panes in the Same Directory on OSX

When we create a new pane in tmux on Linux, the new pane uses the direc-
tory of the existing pane. But on OSX, the new pane places us in the directory
where we started our tmux session. With a little work, we can capture the
working directory when we open a pane and then switch directories automat-
ically, mirroring the Linux version.

To do this, we’ll use send-keys to call a script that will save the current directory
to a environment variable. This script will then call send-keys itself to split the
window and change to the directory stored in that environment variable.

First, we create a new file in our home folder called ~/tmux-panes with the fol-
lowing code:

workflows/tmux-panes
TMUX_CURRENT_DIR=`pwd`
tmux split-window $1
tmux send-keys "cd $TMUX_CURRENT_DIR;clear" C-m

Then we edit .tmux.conf to trigger this file for the vertical and horizontal splits.
We’ll use PREFIX v and PREFIX n for this so we won’t override our existing splitting
commands we defined earlier.

workflows/tmux.conf
unbind v
unbind n
bind v send-keys " ~/tmux-panes -h" C-m
bind n send-keys " ~/tmux-panes -v" C-m

As we discussed in Splitting Panes, on page 19, we need to use the -v flag to
divide the window horizontally, and the -h flag to divide the window vertically
because of how tmux defines vertical and horizontal splits.

Finally, we have to set the tmux-panes script so it’s executable:

$ chmod +x ~/tmux-panes

We can split the panes once we reload our .tmux.conf file.

This approach’s chief downside is that it’s a bit of a hack. It types the com-
mand into the existing tmux window and executes the script. That means
that it has to be triggered in a window where there’s an available command
prompt. So, if your main window is running Vim, this command won’t work.
Using run-shell instead of send-keys doesn’t help, because the newly spawned
shell won’t have access to the environment variable that gets handed to the
script. But it’s still a handy trick, and by defining our own keyboard shortcuts,
we still retain the original commands.

62 • Chapter 6. Workflows

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/bhtmux/code/workflows/tmux-panes
http://media.pragprog.com/titles/bhtmux/code/workflows/tmux.conf
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

6.2 Managing Sessions

As you get more comfortable with tmux, you may find yourself using more
than one tmux session simultaneously. For example, you may fire up unique
tmux sessions for each application you’re working on so you can keep the
environments contained. There are some great tmux features to make man-
aging these sessions painless.

Moving Between Sessions

All tmux sessions on a single machine route through a single server. That
means we can move effortlessly between our sessions from a single client.

To illustrate this, we’ll start two detached tmux sessions, one named “editor,”
which launches Vim, and the other running the top command, which we’ll
call “processes”:

$ tmux new -s editor -d vim
$ tmux new -s processes -d top

We can connect to the “editor” session with

$ tmux attach -t editor

and then we can use PREFIX (to go to the previous session and PREFIX) to move
to the next session.

We can also use PREFIX s to display a list of sessions, so we can quickly navigate
from one session to the next.

You can add your own custom keybindings for this to your .tmux.conf file by
binding keys to the switch-client command. The default configuration looks like
this:

bind -r (switch-client -p
bind -r) switch-client -n

If you’ve set up multiple workspaces, this is an extremely efficient way to
move around your environments, without detaching and reattaching.

Creating or Attaching to Existing Sessions

So far, we’ve always taken the approach of creating new tmux sessions
whenever we want to work. However, we can actually detect if a tmux session
exists and connect to it if it does.

The has-session command returns a Boolean value that we can use in a shell
script. That means we can do something like this in a bash script:

report erratum • discuss

Managing Sessions • 63

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

if ! tmux has-session -t remote; then
exec tmux new-session -s development -d
other setup commands before attaching....

fi
exec tmux attach -t development

If you modify the script to take a parameter, you can use this to create a
single script that you can use to connect to or create any tmux session.

Moving Windows Between Sessions

We can move a window from one session to another. This is handy in case
we’ve started up a process in one environment and want to move it around
or want to consolidate our workspaces.

The move-window command is mapped to PREFIX . (the period), so we can simply
bring up the window we want to move, press the key combination. and then
type the name of the target session.

To demonstrate, let’s create two sessions, with the names “editor” and “pro-
cesses,” running vim and top respectively:

$ tmux new -s editor -d vim
$ tmux new -s processes -d top

We’ll move the window in the “processes” session into the “editor” session.

First, we attach to the “processes” session with this:

$ tmux attach -t processes

Then, we press PREFIX . and type “editor” in the command line that appears.

This removes the only window in the “processes” session, causing it to close.
If we attach to the “editor” session, we’ll see both of our windows.

We can use shell commands to do this, too, so we don’t need to consolidate
things by opening sessions. We use move-window, like this:

$ tmux move-window -s processes:1 -t editor

Here, we’re moving the first window of the “processes” session to the “editor”
session.

6.3 tmux and Your Operating System

As tmux becomes part of your workflow, you may want to integrate it more
tightly with your operating system. In this section, we’ll show you a few ways
to make tmux and your system work well together.

64 • Chapter 6. Workflows

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Using a Different Shell

In this book, we’ve used bash for our shell, but if you’re a fan of zsh, you can
still get all the tmux goodness.

We can explicitly set the default shell in .tmux.conf like this:

set -g default-command /bin/zsh
set -g default-shell /bin/zsh

Since tmux is just a Terminal multiplexer and not a shell of its own, we can
just specify exactly what to run.

Launching tmux by Default

We can configure our system to launch tmux automatically when we open a
Terminal. Using what we know about session names, we can create a new
session if one doesn’t exist.

When tmux is running, it sets the TERM variable to “screen” or the value of
the default-terminal setting in the configuration file. We can use this value in our
.bashrc (or .bash_profile) on OS X) file to determine whether or not we’re currently
in a tmux session. We set our tmux terminal to “screen-256color” back in
Chapter 2, Configuring tmux, on page 15, so we’d use a script like this:

if [["$TERM" != "screen-256color"]]
then

tmux attach-session -t "$USER" || tmux new-session -s "$USER"
exit

fi

If we’re not already in a tmux session, we attempt to attach to one with a
session name of $USER, which is our username. You can replace this with any
value you want, but using the username helps avoid conflicts.

If the session doesn’t exist, tmux will throw an error that the shell script can
interpret as a false value. It can then run the right side of the expression,
which creates a new session with our username as the session’s name. It
then exits out of the script.

When the tmux session starts up, it will run through our configuration file
again, but this time it will see that we’re in a tmux session, skip over this
chunk of code, and execute the rest of the commands in our configuration
file, ensuring that all our environment variables are set for us.

Now, when we create a new Terminal session, we’ll be automatically attached
to a session. Be careful, though, since each time you open a new Terminal

report erratum • discuss

tmux and Your Operating System • 65

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

window, it will be attached to the same session. Typing exit in any Terminal
window will close all the Terminal windows attached!

Recording Program Output to a Log

Sometimes it’s useful to be able to capture the output of a Terminal session
to a log. We’ve already discussed how we can use capture-pane and save-buffer to
do this, but tmux can actually record the activity in a pane right to a text file
with the pipe-pane command. This is similar to the script command available in
many shells, except that with pipe-pane, we can toggle it on and off at will, and
we can start it after a program is already running.

To activate this, enter Command mode and type pipe-pane -o "mylog.txt".

The -o flag lets us toggle the output, which means if we send the exact com-
mand again, we can turn the logging off. To make it easier to execute this
command, let’s add it to our configuration script as a shortcut key.

workflows/tmux.conf
bind P pipe-pane -o "cat >>~/#W.log" \; display "Toggled logging to ~/#W.log"

Now we can press PREFIX P to toggle logging. Thanks to the display command
(short for display-message), we’ll see the name of the log file displayed in the
status bar. The display command has access to the same variables as the status
bar, which we saw in Table 1, Status line variables, on page 28.

Adding Battery Life to the Status Line

If you use tmux on a laptop, you may want to show the remaining battery life
in your status bar, especially if you run your Terminal in full-screen mode.
It turns out that this is a relatively simple thing to add thanks to the #(shell-
command) variable.

Let’s add the battery status to our configuration file. We’ll grab a simple shell
script that can fetch the remaining battery charge and place it in a file called
battery in our home folder. For tmux to use the script, we have to make it
executable. From our Terminal, we run these commands:

$ wget --no-check-certificate \
https://raw.github.com/richoH/dotfiles/master/bin/battery

$ chmod +x ~/battery

If we run

$ ~/battery Discharging

66 • Chapter 6. Workflows

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/bhtmux/code/workflows/tmux.conf
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

from the Terminal, we’ll get the percentage left on the battery. We can get
tmux to display this in its status bar using #(<command>). So, to display the
battery in front of the clock, we change our status-right line to this:

set -g status-right "#(~/battery Discharging) | #[fg=cyan]%d %b %R"

Now, when we reload the .tmux.conf file, the battery status indicator will appear.

To get battery status when it’s charging, we need to execute the command

$ ~/battery Charging

and work that into the status line. I’ll leave that up to you.

You can use this approach to customize your status bar further. You’d simply
need to write your own script that returns the value you want to display, and
then drop it into the status bar.

6.4 What’s Next?

There’s so much more you can do with tmux now that you know the basics
and you’ve had some experience playing around with various configurations.
The tmux manual, which you can access from your terminal with

$ man tmux

has the complete list of configuration options and available commands.

And don’t forget that tmux itself is rapidly evolving. The next version will bring
new configuration options, which will give you even more flexibility.

As you integrate tmux into your workflow, you may discover other techniques
you start to rely on. For example, you can use tmux and Vim together to
create an incredibly effective development environment. You can even use
irssi (a terminal-based IRC client) and Alpine (a terminal-based email app)
within your tmux sessions, either alongside of your text editor in a pane, or
in background windows. Then you can detach from the session and come
back to it later, with your entire environment ready to go.

report erratum • discuss

What’s Next? • 67

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

APPENDIX 1

Our Configuration
Throughout the book, we’ve built up a somewhat complex .tmux.conf file. Here’s
the entire file for your reference.

workflows/tmux.conf
Our .tmux.conf file

Setting the prefix from C-b to C-a
set -g prefix C-a

Free the original Ctrl-b prefix keybinding
unbind C-b

#setting the delay between prefix and command
set -sg escape-time 1

Ensure that we can send Ctrl-A to other apps
bind C-a send-prefix

Set the base index for windows to 1 instead of 0
set -g base-index 1

Set the base index for panes to 1 instead of 0
setw -g pane-base-index 1

Reload the file with Prefix r
bind r source-file ~/.tmux.conf \; display "Reloaded!"

splitting panes
bind | split-window -h
bind - split-window -v

moving between panes
bind h select-pane -L
bind j select-pane -D
bind k select-pane -U

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/bhtmux/code/workflows/tmux.conf
http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

bind l select-pane -R

Quick pane selection
bind -r C-h select-window -t :-
bind -r C-l select-window -t :+

Pane resizing
bind -r H resize-pane -L 5
bind -r J resize-pane -D 5
bind -r K resize-pane -U 5
bind -r L resize-pane -R 5

mouse support - set to on if you want to use the mouse
setw -g mode-mouse off
set -g mouse-select-pane off
set -g mouse-resize-pane off
set -g mouse-select-window off

Set the default terminal mode to 256color mode
set -g default-terminal "screen-256color"

enable activity alerts
setw -g monitor-activity on
set -g visual-activity on

set the status line's colors
set -g status-fg white
set -g status-bg black

set the color of the window list
setw -g window-status-fg cyan
setw -g window-status-bg default
setw -g window-status-attr dim

set colors for the active window
setw -g window-status-current-fg white
setw -g window-status-current-bg red
setw -g window-status-current-attr bright

pane colors
set -g pane-border-fg green
set -g pane-border-bg black
set -g pane-active-border-fg white
set -g pane-active-border-bg yellow

Command / message line
set -g message-fg white
set -g message-bg black
set -g message-attr bright

70 • Appendix 1. Our Configuration

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

Status line left side
set -g status-left-length 40
set -g status-left "#[fg=green]Session: #S #[fg=yellow]#I #[fg=cyan]#P"

set -g status-utf8 on

Status line right side
15% | 28 Nov 18:15
set -g status-right "#(~/battery Discharging) | #[fg=cyan]%d %b %R"

Update the status bar every sixty seconds
set -g status-interval 60

Center the window list
set -g status-justify centre

enable vi keys.
setw -g mode-keys vi

Open panes in the same directory using the tmux-panes script
unbind v
unbind n
bind v send-keys " ~/tmux-panes -h" C-m
bind n send-keys " ~/tmux-panes -v" C-m

Maximize and restore a pane
unbind Up
bind Up new-window -d -n tmp \; swap-pane -s tmp.1 \; select-window -t tmp
unbind Down
bind Down last-window \; swap-pane -s tmp.1 \; kill-window -t tmp

Log output to a text file on demand
bind P pipe-pane -o "cat >>~/#W.log" \; display "Toggled logging to ~/#W.log"

report erratum • discuss

Appendix 1. Our Configuration • 71

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux/errata/add
http://forums.pragprog.com/forums/bhtmux

What you Need to Know
Each new version of the Web brings its own gold rush. Here are your tools.

HTML5 and CSS3 are the future of web development,
but you don’t have to wait to start using them. Even
though the specification is still in development, many
modern browsers and mobile devices already support
HTML5 and CSS3. This book gets you up to speed on
the new HTML5 elements and CSS3 features you can
use right now, and backwards compatible solutions
ensure that you don’t leave users of older browsers
behind.

Brian P. Hogan
(280 pages) ISBN: 9781934356685. $33
http://pragprog.com/titles/bhh5

Modern web development takes more than just HTML
and CSS with a little JavaScript mixed in. Clients want
more responsive sites with faster interfaces that work
on multiple devices, and you need the latest tools and
techniques to make that happen. This book gives you
more than 40 concise, tried-and-true solutions to to-
day’s web development problems, and introduces new
workflows that will expand your skillset.

Brian P. Hogan, Chris Warren, Mike Weber, Chris
Johnson, Aaron Godin
(344 pages) ISBN: 9781934356838. $35
http://pragprog.com/titles/wbdev

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhh5
http://pragprog.com/titles/wbdev

Welcome to the Better Web
You need a better JavaScript and more expressive CSS and HTML today. Start here.

CoffeeScript is JavaScript done right. It provides all of
JavaScript’s functionality wrapped in a cleaner, more
succinct syntax. In the first book on this exciting new
language, CoffeeScript guru Trevor Burnham shows
you how to hold onto all the power and flexibility of
JavaScript while writing clearer, cleaner, and safer
code.

Trevor Burnham
(160 pages) ISBN: 9781934356784. $29
http://pragprog.com/titles/tbcoffee

CSS is fundamental to the web, but it’s a basic lan-
guage and lacks many features. Sass is just like CSS,
but with a whole lot of extra power so you can get more
done, more quickly. Build better web pages today with
Pragmatic Guide to Sass. These concise, easy-to-digest
tips and techniques are the shortcuts experienced CSS
developers need to start developing in Sass today.

Hampton Catlin and Michael Lintorn Catlin
(128 pages) ISBN: 9781934356845. $25
http://pragprog.com/titles/pg_sass

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/tbcoffee
http://pragprog.com/titles/pg_sass

Pragmatic Guide Series
Get started quickly, with a minimum of fuss and hand-holding. The _Pragmatic Guide_ series
features convenient, task-oriented two-page spreads. You’ll find what you need fast, and
get on with your work.

Need to learn how to wrap your head around Git, but
don’t need a lot of hand holding? Grab this book if
you’re new to Git, not to the world of programming.
Git tasks displayed on two-page spreads provide all
the context you need, without the extra fluff.

NEW: Part of the new Pragmatic Guide series

Travis Swicegood
(160 pages) ISBN: 9781934356722. $25
http://pragprog.com/titles/pg_git

JavaScript is everywhere. It’s a key component of to-
day’s Web—a powerful, dynamic language with a rich
ecosystem of professional-grade development tools,
infrastructures, frameworks, and toolkits. This book
will get you up to speed quickly and painlessly with
the 35 key JavaScript tasks you need to know.

NEW: Part of the new Pragmatic Guide series

Christophe Porteneuve
(160 pages) ISBN: 9781934356678. $25
http://pragprog.com/titles/pg_js

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/pg_git
http://pragprog.com/titles/pg_js

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
http://pragprog.com/titles/bhtmux
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/bhtmux
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us

	Cover
	Table of Contents
	Acknowledgments
	Preface
	What Is tmux?
	Who Should Read This Book
	What's In This Book
	What You Need
	Conventions
	Online Resources

	1. Learning The Basics
	Installing tmux
	Starting tmux
	Detaching and Attaching Sessions
	Working with Windows
	Working with Panes
	Working with Command Mode
	What's Next?

	2. Configuring tmux
	Introducing the .tmux.conf File
	Customizing Keys, Commands, and User Input
	Visual Styling
	Customizing the Status Bar
	What's Next?

	3. Scripting Customized tmux Environments
	Creating a Custom Setup with tmux Commands
	Using tmux Configuration for Setup
	Managing Configuration with tmuxinator
	What's Next?

	4. Working With Text and Buffers
	Scrolling Through Output with Copy Mode
	Copying and Pasting Text
	Working with the Clipboard on Linux
	Using OS X Clipboard Commands
	What's Next?

	5. Pair Programming with tmux
	Pairing with a Shared Account
	Using a Shared Account and Grouped Sessions
	Pairing with Separate Accounts and Sockets
	What's Next?

	6. Workflows
	Working Effectively with Panes and Windows
	Managing Sessions
	tmux and Your Operating System
	What's Next?

	A1. Our Configuration

